Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 10, Pages 28–38 (Mi at2287)  

This article is cited in 1 scientific paper (total in 1 paper)

Topical issue

Compensating for noise and perturbances in linear object control

M. V. Zaitseva, E. A. Parsheva

Astrakhan State Technical University, Astrakhan, Russia
Full-text PDF (297 kB) Citations (1)
References:
Abstract: We consider the problem of constructing a robust control system for a linear stationary object under unmeasurable perturbances acting on the object. The perturbances are unbounded on the input of the system and bounded on the output. Based on the system inclusion technique, we consider necessary and sufficient conditions for the linear stationary systems' invariance to perturbances. With the auxiliary contour method, we compensate for the undesirable effects of perturbances on controlled variables. We give an illustrative example and computer modeling results.
Presented by the member of Editorial Board: B. T. Polyak

Received: 14.04.2011
English version:
Automation and Remote Control, 2011, Volume 72, Issue 10, Pages 2031–2040
DOI: https://doi.org/10.1134/S0005117911100043
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Zaitseva, E. A. Parsheva, “Compensating for noise and perturbances in linear object control”, Avtomat. i Telemekh., 2011, no. 10, 28–38; Autom. Remote Control, 72:10 (2011), 2031–2040
Citation in format AMSBIB
\Bibitem{ZaiPar11}
\by M.~V.~Zaitseva, E.~A.~Parsheva
\paper Compensating for noise and perturbances in linear object control
\jour Avtomat. i Telemekh.
\yr 2011
\issue 10
\pages 28--38
\mathnet{http://mi.mathnet.ru/at2287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2905979}
\zmath{https://zbmath.org/?q=an:1230.93021}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 10
\pages 2031--2040
\crossref{https://doi.org/10.1134/S0005117911100043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297404900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155157736}
Linking options:
  • https://www.mathnet.ru/eng/at2287
  • https://www.mathnet.ru/eng/at/y2011/i10/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024