Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 9, Pages 161–172 (Mi at2282)  

This article is cited in 6 scientific papers (total in 6 papers)

Robust and Adaptive Systems

Invariant stabilization of classes of uncertain systems with delays

A. H. Gelig, I. E. Zuber

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (202 kB) Citations (6)
References:
Abstract: This paper deals with uncertain systems with delayed argument and having the property that the entries of the state matrix are functionals of arbitrary nature with the only available information being the bounds on their variations. Using quadratic Lyapunov–Krasovskii functionals of the special form, the control is designed such that it is robust against the variations in the plant matrix, the system output decays exponentially no matter what the persistent exogenous disturbance is, and the state vector remains bounded.
Presented by the member of Editorial Board: L. A. Mironovskii

Received: 12.04.2010
English version:
Automation and Remote Control, 2011, Volume 72, Issue 9, Pages 1941–1950
DOI: https://doi.org/10.1134/S0005117911090153
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. H. Gelig, I. E. Zuber, “Invariant stabilization of classes of uncertain systems with delays”, Avtomat. i Telemekh., 2011, no. 9, 161–172; Autom. Remote Control, 72:9 (2011), 1941–1950
Citation in format AMSBIB
\Bibitem{GelZub11}
\by A.~H.~Gelig, I.~E.~Zuber
\paper Invariant stabilization of classes of uncertain systems with delays
\jour Avtomat. i Telemekh.
\yr 2011
\issue 9
\pages 161--172
\mathnet{http://mi.mathnet.ru/at2282}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2896161}
\zmath{https://zbmath.org/?q=an:1230.93079}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 9
\pages 1941--1950
\crossref{https://doi.org/10.1134/S0005117911090153}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297404400014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-80155199439}
Linking options:
  • https://www.mathnet.ru/eng/at2282
  • https://www.mathnet.ru/eng/at/y2011/i9/p161
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024