Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 6, Pages 115–126 (Mi at2230)  

This article is cited in 17 scientific papers (total in 17 papers)

Nonlinear Systems

Turnpike solutions in optimal control problems for quantum-mechanical systems

V. I. Gurman

Ailamazyan Program Systems Institute, Russian Academy of Sciences, Pereslavl-Zalesskii, Russia
References:
Abstract: We consider the problem of optimal impulse control for a quantum-mechanical spin sequence as a system of oscillators. We study this problem with a double transformation to a derivative problem in which phase variables are oscillator amplitudes. As a result, we get the turnpike solutions. For special (turnpike) sets of boundary conditions they correspond exactly to generalized solutions of the original problem, while for other conditions they can be used as initial approximations for iterative procedures. This problem is a generalization of the special case of two oscillators which we study exhaustively and use as an illustrative example.
Presented by the member of Editorial Board: A. P. Kurdyukov

Received: 16.12.2010
English version:
Automation and Remote Control, 2011, Volume 72, Issue 6, Pages 1248–1257
DOI: https://doi.org/10.1134/S0005117911060129
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. I. Gurman, “Turnpike solutions in optimal control problems for quantum-mechanical systems”, Avtomat. i Telemekh., 2011, no. 6, 115–126; Autom. Remote Control, 72:6 (2011), 1248–1257
Citation in format AMSBIB
\Bibitem{Gur11}
\by V.~I.~Gurman
\paper Turnpike solutions in optimal control problems for quantum-mechanical systems
\jour Avtomat. i Telemekh.
\yr 2011
\issue 6
\pages 115--126
\mathnet{http://mi.mathnet.ru/at2230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2857771}
\zmath{https://zbmath.org/?q=an:1230.49033}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 6
\pages 1248--1257
\crossref{https://doi.org/10.1134/S0005117911060129}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000297376900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960053697}
Linking options:
  • https://www.mathnet.ru/eng/at2230
  • https://www.mathnet.ru/eng/at/y2011/i6/p115
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :94
    References:66
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024