Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2004, Issue 8, Pages 91–101 (Mi at1618)  

Stochastic Systems

Calculation of the optimal filter in delayed perturbation systems

G. B. Afanas'eva

Saint-Petersburg State University of Civil Aviation
References:
Abstract: For an observed plant with delayed perturbations, an explicit formula for calculation of the linear quadratic filter in the Wiener–Kolmogorov problem was presented.The filter contains an integral over the delay interval. For replacement of the optimal filter by a suboptimal one designed disregarding the delay, an explicit expression for the increment of the performance functional was established. For small delays, the asymptotics was determined. For tracking a two-axle carriage whose model has a delay caused by the road imperfections acting first on the leading axle and then on the rear one, an example of filter calculation was presented.
Presented by the member of Editorial Board: B. M. Miller

Received: 22.05.2003
English version:
Automation and Remote Control, 2004, Volume 65, Issue 8, Pages 1255–1264
DOI: https://doi.org/10.1023/B:AURC.0000038728.95761.1e
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. B. Afanas'eva, “Calculation of the optimal filter in delayed perturbation systems”, Avtomat. i Telemekh., 2004, no. 8, 91–101; Autom. Remote Control, 65:8 (2004), 1255–1264
Citation in format AMSBIB
\Bibitem{Afa04}
\by G.~B.~Afanas'eva
\paper Calculation of the optimal filter in delayed perturbation systems
\jour Avtomat. i Telemekh.
\yr 2004
\issue 8
\pages 91--101
\mathnet{http://mi.mathnet.ru/at1618}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2096071}
\zmath{https://zbmath.org/?q=an:1078.93066}
\transl
\jour Autom. Remote Control
\yr 2004
\vol 65
\issue 8
\pages 1255--1264
\crossref{https://doi.org/10.1023/B:AURC.0000038728.95761.1e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223577300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904243492}
Linking options:
  • https://www.mathnet.ru/eng/at1618
  • https://www.mathnet.ru/eng/at/y2004/i8/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024