Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2004, Issue 7, Pages 71–81 (Mi at1606)  

This article is cited in 4 scientific papers (total in 4 papers)

Adaptive and Robust Systems

Synthesis of optimal robust $H^{\infty}$-control by convex optimization methods

D. V. Balandina, M. M. Koganb

a N. I. Lobachevski State University of Nizhni Novgorod
b Nizhny Novgorod State University of Architecture and Civil Engineering
Full-text PDF (238 kB) Citations (4)
References:
Abstract: It is shown that the synthesis of robust $H^{\infty}$-control with respect to the output for systems with unknown limited parameters reduces to the solution of an optimization problem under constraints prescribed by a system of linear matrix inequalities. For this kind of problems, an optimization algorithm implemented with the use of standard procedures of the MATLAB package is suggested. The algorithm effectiveness is illustrated by the example of an optimal dampening of vibrations of a parametrically perturbed pendulum.
Presented by the member of Editorial Board: A. P. Kurdyukov

Received: 22.09.2003
English version:
Automation and Remote Control, 2004, Volume 65, Issue 7, Pages 1099–1109
DOI: https://doi.org/10.1023/B:AURC.0000038716.40679.9b
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Balandin, M. M. Kogan, “Synthesis of optimal robust $H^{\infty}$-control by convex optimization methods”, Avtomat. i Telemekh., 2004, no. 7, 71–81; Autom. Remote Control, 65:7 (2004), 1099–1109
Citation in format AMSBIB
\Bibitem{BalKog04}
\by D.~V.~Balandin, M.~M.~Kogan
\paper Synthesis of optimal robust $H^{\infty}$-control by convex optimization methods
\jour Avtomat. i Telemekh.
\yr 2004
\issue 7
\pages 71--81
\mathnet{http://mi.mathnet.ru/at1606}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2109683}
\zmath{https://zbmath.org/?q=an:1114.93308}
\transl
\jour Autom. Remote Control
\yr 2004
\vol 65
\issue 7
\pages 1099--1109
\crossref{https://doi.org/10.1023/B:AURC.0000038716.40679.9b}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223386000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904240079}
Linking options:
  • https://www.mathnet.ru/eng/at1606
  • https://www.mathnet.ru/eng/at/y2004/i7/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024