Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2004, Issue 7, Pages 60–70 (Mi at1605)  

This article is cited in 4 scientific papers (total in 4 papers)

Discrete Optimization

Local optimization in the steiner problem on the euclidean plane

D. T. Lotareva, A. V. Suprunb, A. P. Uzdemira

a Institute of Systems Analysis, Russian Academy of Sciences
b Moscow Institute of Physics and Technology
Full-text PDF (227 kB) Citations (4)
References:
Abstract: By the local optimal Steiner tree is meant a tree with optimally distributed Steiner points for a given adjacency matrix. The adjacency matrix defines the point of local minimum, and all arrangements (coordinates) of the Steiner points that are admissible for it define the minimum neighborhood. Solution is local optimal if the tree length cannot be reduced by rearranging the Steiner points. An algorithm of local optimization based on the concept of coordinatewise descent was considered.
Presented by the member of Editorial Board: Yu. S. Popkov

Received: 07.10.2003
English version:
Automation and Remote Control, 2004, Volume 65, Issue 7, Pages 1089–1098
DOI: https://doi.org/10.1023/B:AURC.0000038715.76668.83
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. T. Lotarev, A. V. Suprun, A. P. Uzdemir, “Local optimization in the steiner problem on the euclidean plane”, Avtomat. i Telemekh., 2004, no. 7, 60–70; Autom. Remote Control, 65:7 (2004), 1089–1098
Citation in format AMSBIB
\Bibitem{LotSupUzd04}
\by D.~T.~Lotarev, A.~V.~Suprun, A.~P.~Uzdemir
\paper Local optimization in the steiner problem on the euclidean plane
\jour Avtomat. i Telemekh.
\yr 2004
\issue 7
\pages 60--70
\mathnet{http://mi.mathnet.ru/at1605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2109682}
\zmath{https://zbmath.org/?q=an:1075.90053}
\transl
\jour Autom. Remote Control
\yr 2004
\vol 65
\issue 7
\pages 1089--1098
\crossref{https://doi.org/10.1023/B:AURC.0000038715.76668.83}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223386000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904240096}
Linking options:
  • https://www.mathnet.ru/eng/at1605
  • https://www.mathnet.ru/eng/at/y2004/i7/p60
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024