Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2022, Issue 8, Pages 81–99
DOI: https://doi.org/10.31857/S0005231022080050
(Mi at16021)
 

This article is cited in 1 scientific paper (total in 1 paper)

Stochastic Systems

Asymptotic analysis of resource heterogeneous QS $(\text{MMPP}+2\text{M})^{(2,\nu)}/\text{GI}(2)/\infty$ under equivalently increasing service time

S. P. Moiseevaa, T. V. Bushkovaa, E. V. Pankratovab, M. P. Farkhadovb, A. A. Imomovc

a Tomsk State University, Tomsk, 634050 Russia
b Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, 117997 Russia
c Karshi State University, Karshi, 180119 Uzbekistan
References:
Abstract: We consider a resource heterogeneous queuing system with a flexible two-node request-response facility. Each node has a certain resource capacity for service (buffer space) and hence a potential to respond to an incoming demand that generates a request for the provision of some random amount of resources for some random time. The request flows are steady-state Poisson flows of varying intensity. If it is required to use the resources of both nodes to serve a request, then it is assumed that the moments of arrival of such requests form an MMPP flow with a division into two different types of requests. A distinctive feature of the systems under consideration is that the resource is released in the same amount as requested. To construct a multidimensional Markov process, we use the method of introducing an additional variable and dynamic probabilities. The problem of analyzing the total capacity of customers of each type is solved provided that the request servicing intensity is much lower than the incoming flow intensity and assuming that the servers have unlimited resources.
Keywords: infinite-server heterogeneous queuing system, resource system, parallel queuing, Markov modulated Poisson flow, asymptotic analysis.
Presented by the member of Editorial Board: V. M. Vishnevsky

Received: 19.01.2022
Revised: 24.03.2022
Accepted: 28.04.2022
English version:
Automation and Remote Control, 2022, Volume 83, Issue 8, Pages 1213–1227
DOI: https://doi.org/10.1134/S0005117922080057
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. P. Moiseeva, T. V. Bushkova, E. V. Pankratova, M. P. Farkhadov, A. A. Imomov, “Asymptotic analysis of resource heterogeneous QS $(\text{MMPP}+2\text{M})^{(2,\nu)}/\text{GI}(2)/\infty$ under equivalently increasing service time”, Avtomat. i Telemekh., 2022, no. 8, 81–99; Autom. Remote Control, 83:8 (2022), 1213–1227
Citation in format AMSBIB
\Bibitem{MoiBusPan22}
\by S.~P.~Moiseeva, T.~V.~Bushkova, E.~V.~Pankratova, M.~P.~Farkhadov, A.~A.~Imomov
\paper Asymptotic analysis of resource heterogeneous QS $(\text{MMPP}+2\text{M})^{(2,\nu)}/\text{GI}(2)/\infty$ under equivalently increasing service time
\jour Avtomat. i Telemekh.
\yr 2022
\issue 8
\pages 81--99
\mathnet{http://mi.mathnet.ru/at16021}
\crossref{https://doi.org/10.31857/S0005231022080050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4486848}
\edn{https://elibrary.ru/AGWXMX}
\transl
\jour Autom. Remote Control
\yr 2022
\vol 83
\issue 8
\pages 1213--1227
\crossref{https://doi.org/10.1134/S0005117922080057}
Linking options:
  • https://www.mathnet.ru/eng/at16021
  • https://www.mathnet.ru/eng/at/y2022/i8/p81
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024