Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2023, Issue 1, Pages 98–120
DOI: https://doi.org/10.31857/S0005231023010051
(Mi at15936)
 

Intellectual Control Systems, Data Analysis

Randomized machine learning algorithms to forecast the evolution of thermokarst lakes area in permafrost zones

Yu. A. Dubnovab, A. Yu. Popkova, V. Yu. Polishchukc, E. S. Sokold, A. V. Melnikovd, Yu. M. Polishchukd, Yu. S. Popkova

a Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, Russia
b National Research University Higher School of Economics, Moscow, Russia
c Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
d Yugra Research Institute of Information Technologies, Khanty-Mansiysk, Russia
References:
Abstract: Randomized machine learning focuses on problems with considerable uncertainty in data and models. Machine learning algorithms are formulated in terms of a functional entropy-linear programming problem. We adapt these algorithms to forecasting problems on an example of the evolution of thermokarst lakes area in permafrost zones. Thermokarst lakes generate methane, a greenhouse gas affecting climate change. We propose randomized machine learning procedures using dynamic regression models with random parameters and retrospective data (climatic parameters and remote sensing of the Earth’s surface). The randomized machine learning algorithm developed below estimates the probability density functions of model parameters and measurement noises. Randomized forecasting is implemented as algorithms transforming the optimal distributions into the corresponding random sequences (sampling algorithms). The randomized forecasting procedures and technologies are trained, tested, and then applied to forecast the evolution of thermokarst lakes area in Western Siberia.
Keywords: thermokarst lakes, remote sensing, information entropy, balance equations, dynamic regression, optimization, Lyapunov-type problem, sampling, randomized forecasting, randomized machine learning.
Funding agency Grant number
Russian Science Foundation 22-11-20023
This work was supported by the Russian Science Foundation, project no. 22-11-20023.

Received: 20.04.2022
Revised: 21.06.2022
Accepted: 29.09.2022
English version:
Automation and Remote Control, 2023, Volume 84, Issue 1, Pages 64–81
DOI: https://doi.org/10.25728/arcRAS.2023.21.29.001
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Dubnov, A. Yu. Popkov, V. Yu. Polishchuk, E. S. Sokol, A. V. Melnikov, Yu. M. Polishchuk, Yu. S. Popkov, “Randomized machine learning algorithms to forecast the evolution of thermokarst lakes area in permafrost zones”, Avtomat. i Telemekh., 2023, no. 1, 98–120; Autom. Remote Control, 84:1 (2023), 64–81
Citation in format AMSBIB
\Bibitem{DubPopPol23}
\by Yu.~A.~Dubnov, A.~Yu.~Popkov, V.~Yu.~Polishchuk, E.~S.~Sokol, A.~V.~Melnikov, Yu.~M.~Polishchuk, Yu.~S.~Popkov
\paper Randomized machine learning algorithms to forecast the evolution of thermokarst lakes area in permafrost zones
\jour Avtomat. i Telemekh.
\yr 2023
\issue 1
\pages 98--120
\mathnet{http://mi.mathnet.ru/at15936}
\crossref{https://doi.org/10.31857/S0005231023010051}
\edn{https://elibrary.ru/LUKHYY}
\transl
\jour Autom. Remote Control
\yr 2023
\vol 84
\issue 1
\pages 64--81
\crossref{https://doi.org/10.25728/arcRAS.2023.21.29.001}
Linking options:
  • https://www.mathnet.ru/eng/at15936
  • https://www.mathnet.ru/eng/at/y2023/i1/p98
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:75
    References:14
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024