Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2021, Issue 10, Pages 152–164
DOI: https://doi.org/10.31857/S0005231021100123
(Mi at15805)
 

This article is cited in 2 scientific papers (total in 2 papers)

Neural network for data preprocessing in computed tomography

A. V. Yamaevab, M. V. Chukalinacb, D. P. Nikolaevdb, A. V. Sheshkuseb, A. I. Chulichkova

a Lomonosov Moscow State University, Moscow, 119991 Russia
b Smart Engines Service LLC, Moscow, 117312 Russia
c Federal Research Center “Crystallography and Photonics”, Moscow, 119333 Russia
d Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
e Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333 Russia
References:
Abstract: We propose a lightweight noise-canceling filtering neural network that implements the filtering stage in the algorithm for tomographic reconstruction of convolution and backprojection (Filtered BackProjection—FBP). We substantiate the neural network architecture, selected on the basis of the possibility of approximating the ramp filtering operation with sufficient accuracy. The network performance has been demonstrated using synthetic data that mimics low-exposure tomographic projections. The quantum nature of X-ray radiation, the exposure time of one frame, and the nonlinear response of the ionizing radiation detector are taken into account when generating the synthetic data. The reconstruction time using the proposed network is 11 times shorter than that of the heavy networks selected for comparison, with the reconstruction quality in the $SSIM$ metric above 0.9.
Keywords: low-dose computed tomography, neural networks, UNet, fast computing.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00790
18-29-26017
This work was partly financially supported by the Russian Foundation for Basic Research, projects nos. 19-01-00790 and 18-29-26017.
Presented by the member of Editorial Board: A. A. Lazarev

Received: 24.01.2021
Revised: 01.06.2021
Accepted: 30.06.2021
English version:
Automation and Remote Control, 2021, Volume 82, Issue 10, Pages 1752–1762
DOI: https://doi.org/10.1134/S000511792110012X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Yamaev, M. V. Chukalina, D. P. Nikolaev, A. V. Sheshkus, A. I. Chulichkov, “Neural network for data preprocessing in computed tomography”, Avtomat. i Telemekh., 2021, no. 10, 152–164; Autom. Remote Control, 82:10 (2021), 1752–1762
Citation in format AMSBIB
\Bibitem{YamChuNik21}
\by A.~V.~Yamaev, M.~V.~Chukalina, D.~P.~Nikolaev, A.~V.~Sheshkus, A.~I.~Chulichkov
\paper Neural network for data preprocessing in computed tomography
\jour Avtomat. i Telemekh.
\yr 2021
\issue 10
\pages 152--164
\mathnet{http://mi.mathnet.ru/at15805}
\crossref{https://doi.org/10.31857/S0005231021100123}
\elib{https://elibrary.ru/item.asp?id=46621881}
\transl
\jour Autom. Remote Control
\yr 2021
\vol 82
\issue 10
\pages 1752--1762
\crossref{https://doi.org/10.1134/S000511792110012X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000721983400012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85119624213}
Linking options:
  • https://www.mathnet.ru/eng/at15805
  • https://www.mathnet.ru/eng/at/y2021/i10/p152
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025