Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2021, Issue 12, Pages 8–47
DOI: https://doi.org/10.31857/S0005231021120035
(Mi at15735)
 

This article is cited in 1 scientific paper (total in 1 paper)

Surveys

On estimation errors in optical communication and location

O. V. Chernoyarovabc, S. Dachianbd, Yu. A. Kutoyantseb, A. V. Zyulkovf

a National Research University “Moscow Power Engineering Institute,” Moscow, 111250 Russia
b Tomsk State University, Tomsk, 634050 Russia
c Maikop State Technological University, Maikop, 385000 Russia
d Université de Lille, Lille, 59000 France
e Le Mans Université, Le Mans, 72085 France
f Voronezh State University, Voronezh, 394018 Russia
References:
Abstract: We consider several problems of parameter estimation based on observations of inhomogeneous Poisson processes arising in various practical applications of optical communication and location. The intensity function of the observed process consists of a periodic signal depending on an unknown parameter and a constant noise intensity. The asymptotic behavior of maximum likelihood and Bayesian estimators in cases of phase and frequency modulation of signals is described. Particular attention is paid to signals of various regularity (smooth, continuous but nondifferentiable, and of change-point type). Numerical simulations illustrate the results presented. This paper is a survey of results on the behavior of estimators in cases of frequency and phase modulation of signals of various regularity.
Keywords: parameter estimation, inhomogeneous Poisson process, phase and frequency modulation, maximum likelihood and Bayesian estimators, asymptotic property.
Funding agency Grant number
Russian Foundation for Basic Research 20-11-50024
This work was supported by the Russian Foundation for Basic Research, project no. 20-11-50024.
Presented by the member of Editorial Board: E. Ya. Rubinovich

Received: 16.06.2021
Revised: 01.07.2021
Accepted: 05.08.2021
English version:
Automation and Remote Control, 2021, Volume 82, Issue 12, Pages 2041–2075
DOI: https://doi.org/10.1134/S0005117921120018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. V. Chernoyarov, S. Dachian, Yu. A. Kutoyants, A. V. Zyulkov, “On estimation errors in optical communication and location”, Avtomat. i Telemekh., 2021, no. 12, 8–47; Autom. Remote Control, 82:12 (2021), 2041–2075
Citation in format AMSBIB
\Bibitem{CheDacKut21}
\by O.~V.~Chernoyarov, S.~Dachian, Yu.~A.~Kutoyants, A.~V.~Zyulkov
\paper On estimation errors in optical communication and location
\jour Avtomat. i Telemekh.
\yr 2021
\issue 12
\pages 8--47
\mathnet{http://mi.mathnet.ru/at15735}
\crossref{https://doi.org/10.31857/S0005231021120035}
\transl
\jour Autom. Remote Control
\yr 2021
\vol 82
\issue 12
\pages 2041--2075
\crossref{https://doi.org/10.1134/S0005117921120018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745939400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123834770}
Linking options:
  • https://www.mathnet.ru/eng/at15735
  • https://www.mathnet.ru/eng/at/y2021/i12/p8
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :1
    References:30
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024