|
Avtomatika i Telemekhanika, 2004, Issue 5, Pages 38–44
(Mi at1573)
|
|
|
|
Deterministic Systems
Stability of the logistic population model with delayed environmental response
M. M. Kipnis, M. Yu. Vaguina Chelyabinsk State Pedagogical University
Abstract:
The population dynamics model $\dfrac{dy}{dt} = \varepsilon y(t)\left( 1-\dfrac{1}{N} \sum\limits_{k=0}^{n}a_k y(t-\tau_k)\right)$, $\varepsilon>0$, $N>0$, $a_k\geqslant 0$, $\tau_k\geqslant 0$ $(0\leqslant k\leqslant n)$, $\sum\limits_{k=0}^{n} a_k=1$, was considered. For this model with uniform distribution of delays ($\tau_k=k\tau$, $\tau>0$) and $a_n=0$, nonnegativeness and convexity of the sequence $a_k$ $(0\leqslant k\leqslant n)$ $\sum\limits_{k=0}^{n}a_k \tau_k$.
.
Citation:
M. M. Kipnis, M. Yu. Vaguina, “Stability of the logistic population model with delayed environmental response”, Avtomat. i Telemekh., 2004, no. 5, 38–44; Autom. Remote Control, 65:5 (2004), 721–726
Linking options:
https://www.mathnet.ru/eng/at1573 https://www.mathnet.ru/eng/at/y2004/i5/p38
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 71 | References: | 38 | First page: | 2 |
|