Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2020, Issue 11, Pages 136–154
DOI: https://doi.org/10.31857/S0005231020110082
(Mi at15596)
 

This article is cited in 2 scientific papers (total in 3 papers)

Optimization of linear stochastic systems based on canonical wavelet expansions

I. N. Sinitsynab, V. I. Sinitsynba, E. R. Korepanova, T. D. Konashenkovaa

a Institute of Informatics Problems, Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, Russia
b Moscow Aviation Institute (National Research University), Moscow, Russia
Full-text PDF (302 kB) Citations (3)
References:
Abstract: Design problems for linear mean square (MS) optimal filters are considered on the basis of canonical wavelet expansions (CWEs). To simulate the class of essentially non-stationary stochastic processes, including those describing shock effects, the idea put forward in this paper is to use the CWEs based on the coefficients of its covariance function expanded in terms of an orthogonal two-dimensional wavelet basis. To estimate an observed process represented as a CWE, a linear MS optimal operator in the form of a set of formal rules describing the operator's response to basic wavelet functions is constructed. Explicit formulas for calculating the MS optimal estimate of the signal and the MS optimal estimate of the quality of the constructed linear MS optimal operator are derived. Sintez-VL, a software tool developed in MATLAB, is described. A test example with the delta function is provided.
Keywords: canonical wavelet expansion, nonstationary linear mean square optimal filter, orthogonal wavelets with a finite support, Haar wavelets.
Presented by the member of Editorial Board: A. I. Kibzun

Received: 02.03.2020
Revised: 25.05.2020
Accepted: 09.07.2020
English version:
Automation and Remote Control, 2020, Volume 81, Issue 11, Pages 2046–2061
DOI: https://doi.org/10.1134/S0005117920110077
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. N. Sinitsyn, V. I. Sinitsyn, E. R. Korepanov, T. D. Konashenkova, “Optimization of linear stochastic systems based on canonical wavelet expansions”, Avtomat. i Telemekh., 2020, no. 11, 136–154; Autom. Remote Control, 81:11 (2020), 2046–2061
Citation in format AMSBIB
\Bibitem{SinSinKor20}
\by I.~N.~Sinitsyn, V.~I.~Sinitsyn, E.~R.~Korepanov, T.~D.~Konashenkova
\paper Optimization of linear stochastic systems based on canonical wavelet expansions
\jour Avtomat. i Telemekh.
\yr 2020
\issue 11
\pages 136--154
\mathnet{http://mi.mathnet.ru/at15596}
\crossref{https://doi.org/10.31857/S0005231020110082}
\elib{https://elibrary.ru/item.asp?id=45088047}
\transl
\jour Autom. Remote Control
\yr 2020
\vol 81
\issue 11
\pages 2046--2061
\crossref{https://doi.org/10.1134/S0005117920110077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000598342800007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097574561}
Linking options:
  • https://www.mathnet.ru/eng/at15596
  • https://www.mathnet.ru/eng/at/y2020/i11/p136
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024