Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2020, Issue 5, Pages 139–155
DOI: https://doi.org/10.31857/S0005231020050098
(Mi at15488)
 

Topical issue

Geometric algorithms for finding a point in the intersection of balls

I. N. Lushchakova

Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
References:
Abstract: We consider a problem of finding a point in the intersection of $n$ balls in the Euclidean space $E^m$. For the case $m=2$ we suggest two algorithms of the complexity $O(n^2\log n)$ and $O(n^3)$ operations, respectively. For the general case we suggest an exact polynomial recursive algorithm which uses the orthogonal transformation of the space $E^m$.
Keywords: intersection of balls, approximation a convex set by ellipsoids, polynomial algorithm, delivery applications of drones, configuration of the swarm of drones.
Presented by the member of Editorial Board: A. A. Lazarev

Received: 18.07.2019
Revised: 15.09.2019
Accepted: 28.11.2019
English version:
Automation and Remote Control, 2020, Volume 81, Issue 5, Pages 869–882
DOI: https://doi.org/10.1134/S0005117920050070
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. N. Lushchakova, “Geometric algorithms for finding a point in the intersection of balls”, Avtomat. i Telemekh., 2020, no. 5, 139–155; Autom. Remote Control, 81:5 (2020), 869–882
Citation in format AMSBIB
\Bibitem{Lus20}
\by I.~N.~Lushchakova
\paper Geometric algorithms for finding a point in the intersection of balls
\jour Avtomat. i Telemekh.
\yr 2020
\issue 5
\pages 139--155
\mathnet{http://mi.mathnet.ru/at15488}
\crossref{https://doi.org/10.31857/S0005231020050098}
\elib{https://elibrary.ru/item.asp?id=43277908}
\transl
\jour Autom. Remote Control
\yr 2020
\vol 81
\issue 5
\pages 869--882
\crossref{https://doi.org/10.1134/S0005117920050070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000531703500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084270376}
Linking options:
  • https://www.mathnet.ru/eng/at15488
  • https://www.mathnet.ru/eng/at/y2020/i5/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :113
    References:24
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024