Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2021, Issue 1, Pages 83–94
DOI: https://doi.org/10.31857/S0005231021010049
(Mi at15472)
 

Nonlinear Systems

A criterion for the asymptotic stability of a periodic selector-linear differential inclusion

M. V. Morozov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, 117997 Russia
References:
Abstract: We consider a periodic selector-linear differential inclusion. It is proved that for this inclusion to be uniformly asymptotically stable, it is necessary and sufficient that there exists a time-periodic Lyapunov function of a quasi-quadratic form. We derive estimates for the Lyapunov function that guarantee its positive definiteness and the existence of an infinitesimal upper limit.
Keywords: periodic selector-linear differential inclusion, Lyapunov function.
Presented by the member of Editorial Board: L. B. Rapoport

Received: 19.05.2020
Revised: 07.07.2020
Accepted: 09.07.2020
English version:
Automation and Remote Control, 2021, Volume 82, Issue 1, Pages 63–72
DOI: https://doi.org/10.1134/S0005117921010045
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Morozov, “A criterion for the asymptotic stability of a periodic selector-linear differential inclusion”, Avtomat. i Telemekh., 2021, no. 1, 83–94; Autom. Remote Control, 82:1 (2021), 63–72
Citation in format AMSBIB
\Bibitem{Mor21}
\by M.~V.~Morozov
\paper A criterion for the asymptotic stability of a periodic selector-linear differential inclusion
\jour Avtomat. i Telemekh.
\yr 2021
\issue 1
\pages 83--94
\mathnet{http://mi.mathnet.ru/at15472}
\crossref{https://doi.org/10.31857/S0005231021010049}
\elib{https://elibrary.ru/item.asp?id=46746425}
\transl
\jour Autom. Remote Control
\yr 2021
\vol 82
\issue 1
\pages 63--72
\crossref{https://doi.org/10.1134/S0005117921010045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000621864900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101663582}
Linking options:
  • https://www.mathnet.ru/eng/at15472
  • https://www.mathnet.ru/eng/at/y2021/i1/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:133
    Full-text PDF :24
    References:34
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024