Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2004, Issue 3, Pages 48–54 (Mi at1539)  

This article is cited in 7 scientific papers (total in 7 papers)

Discrete Optimization

Stability analysis of some discrete optimization algorithms

M. V. Devyaterikova, A. A. Kolokolov

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
Full-text PDF (185 kB) Citations (7)
References:
Abstract: Facts established for stability of the relaxation set-based integer programming algorithms were reviewed. For the problem of integer linear programming, the branch-and-bound algorithms were examined for stability within the framework of the Land–Doig method. They were shown to be unstable for sufficiently small oscillations of the relaxation sets of the problems at hand. A similar result was obtained for algorithms with the Dantzig cuts.
Presented by the member of Editorial Board: A. I. Kibzun

Received: 27.06.2003
English version:
Automation and Remote Control, 2004, Volume 65, Issue 3, Pages 401–406
DOI: https://doi.org/10.1023/B:AURC.0000019371.51497.90
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Devyaterikova, A. A. Kolokolov, “Stability analysis of some discrete optimization algorithms”, Avtomat. i Telemekh., 2004, no. 3, 48–54; Autom. Remote Control, 65:3 (2004), 401–406
Citation in format AMSBIB
\Bibitem{DevKol04}
\by M.~V.~Devyaterikova, A.~A.~Kolokolov
\paper Stability analysis of some discrete optimization algorithms
\jour Avtomat. i Telemekh.
\yr 2004
\issue 3
\pages 48--54
\mathnet{http://mi.mathnet.ru/at1539}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2100651}
\zmath{https://zbmath.org/?q=an:1075.90057}
\transl
\jour Autom. Remote Control
\yr 2004
\vol 65
\issue 3
\pages 401--406
\crossref{https://doi.org/10.1023/B:AURC.0000019371.51497.90}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220615200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904243062}
Linking options:
  • https://www.mathnet.ru/eng/at1539
  • https://www.mathnet.ru/eng/at/y2004/i3/p48
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024