Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 11, Pages 24–58
DOI: https://doi.org/10.1134/S0005231019110023
(Mi at15378)
 

This article is cited in 26 scientific papers (total in 26 papers)

Topical issue (end)

Complete statistical theory of learning

V. N. Vapnikab

a Columbia University, New York, USA
b Отдел исследования ИИ Фэйсбук, Нью-Йорк, США
References:
Abstract: Existing mathematical model of learning requires using training data find in a given subset of admissible function the function that minimizes the expected loss. In the paper this setting is called Second selection problem. Mathematical model of learning in this paper along with Second selection problem requires to solve the so-called First selection problem where using training data one first selects from wide set of function in Hilbert space an admissible subset of functions that include the desired function and second selects in this admissible subset a good approximation to the desired function. Existence of two selection problems reflects fundamental property of Hilbert space, existence of two different concepts of convergence of functions: weak convergence (that leads to solution of the First selection problem) and strong convergence (that leads to solution of the Second selection problem). In the paper we describe simultaneous solution of both selection problems for functions that belong to Reproducing Kernel Hilbert space. The solution is obtained in closed form.
Keywords: statistical learning theory, first selection problem, second selection problem, reproducing kernel Hilbert space, training data.

Received: 13.07.2018
Revised: 05.09.2018
Accepted: 08.11.2018
English version:
Automation and Remote Control, 2019, Volume 80, Issue 11, Pages 1949–1975
DOI: https://doi.org/10.1134/S000511791911002X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Vapnik, “Complete statistical theory of learning”, Avtomat. i Telemekh., 2019, no. 11, 24–58; Autom. Remote Control, 80:11 (2019), 1949–1975
Citation in format AMSBIB
\Bibitem{Vap19}
\by V.~N.~Vapnik
\paper Complete statistical theory of learning
\jour Avtomat. i Telemekh.
\yr 2019
\issue 11
\pages 24--58
\mathnet{http://mi.mathnet.ru/at15378}
\crossref{https://doi.org/10.1134/S0005231019110023}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 11
\pages 1949--1975
\crossref{https://doi.org/10.1134/S000511791911002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000496295400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075007395}
Linking options:
  • https://www.mathnet.ru/eng/at15378
  • https://www.mathnet.ru/eng/at/y2019/i11/p24
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:638
    Full-text PDF :164
    References:97
    First page:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024