Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 10, Pages 115–131
DOI: https://doi.org/10.1134/S0005231019100064
(Mi at15367)
 

This article is cited in 4 scientific papers (total in 4 papers)

Linear quadratic regulator: II. Robust formulations

M. V. Khlebnikova, P. S. Shcherbakovba

a Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
b Institute for Systems Analysis, Russian Academy of Sciences, Moscow, Russia
Full-text PDF (671 kB) Citations (4)
References:
Abstract: The classical linear quadratic regulation problem is considered in the robust formulations where the matrices of the system and/or initial conditions are not know precisely. Several approaches are proposed where the quadratic cost is minimized against the worst-case uncertainties. Finding such controllers is performed via reducing the matrix Riccati equation with uncertainty to a single linear matrix inequality. The properties of the solutions are discussed and the comparison with previously known approaches is performed.
Keywords: linear quadratic regulator, uncertainty, robustness, linear matrix inequalities.
Funding agency Grant number
Russian Foundation for Basic Research 18-08-00140_а
This work was supported in part by the Russian Foundation for Basic Research, project no. 18-08-00140.

Received: 19.07.2018
Revised: 14.09.2018
Accepted: 08.11.2018
English version:
Automation and Remote Control, 2019, Volume 80, Issue 10, Pages 1847–1860
DOI: https://doi.org/10.1134/S0005117919100060
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Khlebnikov, P. S. Shcherbakov, “Linear quadratic regulator: II. Robust formulations”, Avtomat. i Telemekh., 2019, no. 10, 115–131; Autom. Remote Control, 80:10 (2019), 1847–1860
Citation in format AMSBIB
\Bibitem{KhlShc19}
\by M.~V.~Khlebnikov, P.~S.~Shcherbakov
\paper Linear quadratic regulator: II. Robust formulations
\jour Avtomat. i Telemekh.
\yr 2019
\issue 10
\pages 115--131
\mathnet{http://mi.mathnet.ru/at15367}
\crossref{https://doi.org/10.1134/S0005231019100064}
\elib{https://elibrary.ru/item.asp?id=40551533}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 10
\pages 1847--1860
\crossref{https://doi.org/10.1134/S0005117919100060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000490597000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073627781}
Linking options:
  • https://www.mathnet.ru/eng/at15367
  • https://www.mathnet.ru/eng/at/y2019/i10/p115
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025