Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 10, Pages 37–61
DOI: https://doi.org/10.1134/S0005231019100027
(Mi at15364)
 

This article is cited in 7 scientific papers (total in 7 papers)

Optimal control of maximum output deviations of a linear time-varying system on a finite horizon

D. V. Balandina, R. S. Biryukovb, M. M. Koganb

a Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
b Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod, Russia
Full-text PDF (986 kB) Citations (7)
References:
Abstract: The maximum output deviation of a linear time-varying system is defined as the worst-case measure of the maximum value of the output Euclidean norm over a finite horizon provided that the sum of the squared energy of an external disturbance and a quadratic form of the initial state is $1$. Maximum deviation is characterized in terms of solutions to differential matrix equations or inequalities. A modified concept of the boundedness of the system on a finite horizon under an external and initial disturbances is introduced and its connection with the concept of maximum deviation is established. Necessary and sufficient conditions for the boundedness of the system on a finite horizon are obtained. It is demonstrated that optimal controllers (including the multiobjective ones that minimize the maximum deviations of several outputs) as well as controllers ensuring the boundedness of the system can be designed using linear matrix inequalities.
Keywords: maximum deviation of output, linear time-varying system, generalized $H_2$-norm, linear matrix inequalities.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-520002
19-01-00289
This work was supported by the Russian Foundation for Basic Research, projects nos. 18-41-520002, 19-01-00289.

Received: 13.07.2018
Revised: 05.09.2018
Accepted: 08.11.2018
English version:
Automation and Remote Control, 2019, Volume 80, Issue 10, Pages 1783–1802
DOI: https://doi.org/10.1134/S0005117919100023
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. V. Balandin, R. S. Biryukov, M. M. Kogan, “Optimal control of maximum output deviations of a linear time-varying system on a finite horizon”, Avtomat. i Telemekh., 2019, no. 10, 37–61; Autom. Remote Control, 80:10 (2019), 1783–1802
Citation in format AMSBIB
\Bibitem{BalBirKog19}
\by D.~V.~Balandin, R.~S.~Biryukov, M.~M.~Kogan
\paper Optimal control of maximum output deviations of a linear time-varying system on a finite horizon
\jour Avtomat. i Telemekh.
\yr 2019
\issue 10
\pages 37--61
\mathnet{http://mi.mathnet.ru/at15364}
\crossref{https://doi.org/10.1134/S0005231019100027}
\elib{https://elibrary.ru/item.asp?id=40551529}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 10
\pages 1783--1802
\crossref{https://doi.org/10.1134/S0005117919100023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000490597000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073634276}
Linking options:
  • https://www.mathnet.ru/eng/at15364
  • https://www.mathnet.ru/eng/at/y2019/i10/p37
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :34
    References:34
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024