Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 8, Pages 109–128
DOI: https://doi.org/10.1134/S0005231019080099
(Mi at15318)
 

Control in Social Economic Systems

Dual forecasting algorithm for technological structural matrices in dynamic input-output models

P. I. Safonov

St. Cloud State University, St. Cloud, USA
References:
Abstract: Based on the global Krotov successive improvement method, we propose a dual computational algorithm for a discrete optimal control problem corresponding to a convex large-scale quadratic programming problem with a separable functional that arises in the prediction of the direct costs (structural) matrix in dynamic input-output models. With decomposition, we are able to use a special form of the constraint matrix to reduce the problem dimension.
Keywords: input-output (intersectoral balance) model, direct costs (structural) matrix, balanced prediction, quadratic programming, decomposition, Krotov’s dual optimal control method.

Received: 14.02.2017
Revised: 25.07.2018
Accepted: 08.11.2018
English version:
Automation and Remote Control, 2019, Volume 80, Issue 8, Pages 1455–1470
DOI: https://doi.org/10.1134/S0005117919080071
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. I. Safonov, “Dual forecasting algorithm for technological structural matrices in dynamic input-output models”, Avtomat. i Telemekh., 2019, no. 8, 109–128; Autom. Remote Control, 80:8 (2019), 1455–1470
Citation in format AMSBIB
\Bibitem{Saf19}
\by P.~I.~Safonov
\paper Dual forecasting algorithm for technological structural matrices in dynamic input-output models
\jour Avtomat. i Telemekh.
\yr 2019
\issue 8
\pages 109--128
\mathnet{http://mi.mathnet.ru/at15318}
\crossref{https://doi.org/10.1134/S0005231019080099}
\elib{https://elibrary.ru/item.asp?id=39141960}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 8
\pages 1455--1470
\crossref{https://doi.org/10.1134/S0005117919080071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000481792500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070777292}
Linking options:
  • https://www.mathnet.ru/eng/at15318
  • https://www.mathnet.ru/eng/at/y2019/i8/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025