Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 8, Pages 64–75
DOI: https://doi.org/10.1134/S0005231019080063
(Mi at15316)
 

This article is cited in 3 scientific papers (total in 3 papers)

Control in Technical Systems

Optimal control problems with disorder

G. I. Belyavskiiab, N. V. Danilovaab, I. A. Zemlyakovaab

a Vorovich Institute of Mathematics, Mechanics, and Computer Science, Rostov-on-Don, Russia
b Southern Federal University, Rostov-on-Don, Russia
Full-text PDF (762 kB) Citations (3)
References:
Abstract: We consider a generalization of processes with disorder, namely processes with a vector disorder. For these problems, we consider a class of optimal control problems that do not detect the disorder. We propose a computational method for solving control problems on a finite time interval and with an objective functional defined at the end of the interval, based on the use of the martingale technique. We consider a computational experiment for a model with two barriers and two stopping times.
Keywords: processes with disorder, vector disorder, martingale, martingale measure, Wiener process, quantile hedging.
Funding agency Grant number
Russian Science Foundation 17-19-01038
This work was financially supported by the Russian Science Foundation, project no. 17-19-01038.

Received: 23.10.2018
Revised: 23.02.2019
Accepted: 25.04.2019
English version:
Automation and Remote Control, 2019, Volume 80, Issue 8, Pages 1419–1427
DOI: https://doi.org/10.1134/S0005117919080046
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. I. Belyavskii, N. V. Danilova, I. A. Zemlyakova, “Optimal control problems with disorder”, Avtomat. i Telemekh., 2019, no. 8, 64–75; Autom. Remote Control, 80:8 (2019), 1419–1427
Citation in format AMSBIB
\Bibitem{BelDanZem19}
\by G.~I.~Belyavskii, N.~V.~Danilova, I.~A.~Zemlyakova
\paper Optimal control problems with disorder
\jour Avtomat. i Telemekh.
\yr 2019
\issue 8
\pages 64--75
\mathnet{http://mi.mathnet.ru/at15316}
\crossref{https://doi.org/10.1134/S0005231019080063}
\elib{https://elibrary.ru/item.asp?id=39141957}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 8
\pages 1419--1427
\crossref{https://doi.org/10.1134/S0005117919080046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000481792500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070767994}
Linking options:
  • https://www.mathnet.ru/eng/at15316
  • https://www.mathnet.ru/eng/at/y2019/i8/p64
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024