Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 3, Pages 138–151
DOI: https://doi.org/10.1134/S0005231019030097
(Mi at15113)
 

Intellectual Control Systems, Data Analysis

Entropy-based evaluation in classification problems

Yu. A. Dubnovabc

a Moscow Institute of Physics and Technology
b National Research University "Higher School of Economics", Moscow
c Institute for Systems Analysis of Russian Academy of Sciences
References:
Abstract: The problem of binary classification is considered, an algorithm for its solution based on maximum entropy estimation of the parameters of randomized data models is offered: a detailed description of the model and the entropy estimation method is given, advantages and disadvantages of this approach are described, the results of numerical experiments and comparisons with the classical support vector machine algorithm on the accuracy of classification and depending on the volume of the training sample.
Keywords: machine learning, classification, maximum entropy method.
Funding agency Grant number
Russian Foundation for Basic Research 17-29-02115_офи_м
Presented by the member of Editorial Board: B. M. Miller

Received: 19.07.2018
Revised: 06.11.2018
Accepted: 08.11.2018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Dubnov, “Entropy-based evaluation in classification problems”, Avtomat. i Telemekh., 2019, no. 3, 138–151
Citation in format AMSBIB
\Bibitem{Dub19}
\by Yu.~A.~Dubnov
\paper Entropy-based evaluation in classification problems
\jour Avtomat. i Telemekh.
\yr 2019
\issue 3
\pages 138--151
\mathnet{http://mi.mathnet.ru/at15113}
\crossref{https://doi.org/10.1134/S0005231019030097}
\elib{https://elibrary.ru/item.asp?id=37135610}
Linking options:
  • https://www.mathnet.ru/eng/at15113
  • https://www.mathnet.ru/eng/at/y2019/i3/p138
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:215
    Full-text PDF :46
    References:28
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024