Abstract:
We consider problems with correction/perturbation of all parameters for the following objects and properties: systems of linear algebraic equations and feasibility properties, systems of linear algebraic inequalities and feasibility properties, a linear stationary control system and the superstability property, a function defined point by point and the linearity property, and two finite sets of points and the linear separability property.
Citation:
O. V. Murav'eva, “Robustness and correction of linear models”, Avtomat. i Telemekh., 2011, no. 3, 98–112; Autom. Remote Control, 72:3 (2011), 556–569
\Bibitem{Mur11}
\by O.~V.~Murav'eva
\paper Robustness and correction of linear models
\jour Avtomat. i Telemekh.
\yr 2011
\issue 3
\pages 98--112
\mathnet{http://mi.mathnet.ru/at1492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2828449}
\zmath{https://zbmath.org/?q=an:1229.93044}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 3
\pages 556--569
\crossref{https://doi.org/10.1134/S0005117911030076}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288554400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79954514799}
Linking options:
https://www.mathnet.ru/eng/at1492
https://www.mathnet.ru/eng/at/y2011/i3/p98
This publication is cited in the following 5 articles:
O. V. Murav'eva, “Determination of consistency and inconsistency radii for systems of linear equations and inequalities using the matrix l1 norm”, Comput. Math. Math. Phys., 58:6 (2018), 840–849
V. V. Volkov, V. I. Erokhin, A. S. Krasnikov, A. V. Razumov, M. N. Khvostov, “Minimum-Euclidean-norm matrix correction for a pair of dual linear programming problems”, Comput. Math. Math. Phys., 57:11 (2017), 1757–1770
O. V. Murav'eva, “Consistency and inconsistency radii for solving systems of linear equations and inequalities”, Comput. Math. Math. Phys., 55:3 (2015), 366–377
O. V. Muraveva, “Stability of compatible systems of linear inequalities and linear separability”, J. Appl. Industr. Math., 8:3 (2014), 349–356
V. I. Erokhin, A. S. Krasnikov, M. N. Khvostov, “O dostatochnykh usloviyakh razreshimosti zadach lineinogo programmirovaniya pri matrichnoi korrektsii ikh ogranichenii”, Tr. IMM UrO RAN, 19, no. 2, 2013, 144–156