Abstract:
We consider an exponential queueing network that differs from a Gelenbe network (with the usual positive and so-called negative customers), first, in that the sojourn time of customers at the network nodes is bounded by a random value whose conditional distribution for a fixed number of customers in a node is exponential. Second, we significantly relax the conditions on possible values of parameters for incoming Poisson flows of positive and negative customers in Gelenbe’s theorem. Claims serviced at the nodes and customers leaving the nodes at the end of their sojourn time can stay positive, become negative, or leave the network according to different routing matrices. We prove a theorem that generalizes Gelenbe's theorem.
Citation:
Yu. V. Malinkovskii, “Stationary probability distribution for states of G-networks with constrained sojourn time”, Avtomat. i Telemekh., 2017, no. 10, 155–167; Autom. Remote Control, 78:10 (2017), 1857–1866
\Bibitem{Mal17}
\by Yu.~V.~Malinkovskii
\paper Stationary probability distribution for states of $G$-networks with constrained sojourn time
\jour Avtomat. i Telemekh.
\yr 2017
\issue 10
\pages 155--167
\mathnet{http://mi.mathnet.ru/at14908}
\elib{https://elibrary.ru/item.asp?id=30067048}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 10
\pages 1857--1866
\crossref{https://doi.org/10.1134/S0005117917100095}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413137100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032029397}
Linking options:
https://www.mathnet.ru/eng/at14908
https://www.mathnet.ru/eng/at/y2017/i10/p155
This publication is cited in the following 3 articles:
Yu. V. Malinkovskii, S. Yu. Evmenenko, “Invariantnost statsionarnogo raspredeleniya otkrytoi seti obsluzhivaniya s eksponentsialnym ogranicheniem na vremya prebyvaniya”, Avtomat. i telemekh., 2024, no. 9, 93–100
A. V. Gorbunova, A. V. Lebedev, “Queueing system with two input flows, preemptive priority, and stochastic dropping”, Autom. Remote Control, 81:12 (2020), 2230–2243
X.-L. Wang, Q. Wen, Zh.-J. Zhang, R. Mu, “The optimal queuing strategy for airport taxis”, IEEE Access, 8 (2020), 208232–208239