|
Avtomatika i Telemekhanika, 2017, Issue 10, Pages 109–129
(Mi at14905)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Stochastic Systems
Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model
E. R. Goryainovaa, E. A. Botvinkinb a National Research University Higher School of Economics, Moscow, Russia
b SJC "Europlan", Moscow, Russia
Abstract:
We consider LS-, LAD-, R-, M-, S-, LMS-, LTS-, MM-, and HBR-estimates for the parameters of a linear regression model with unknown noise distribution. With computer modeling for medium sized samples, we compare the accuracy of the considered estimates for the most popular probability distributions of noise in a regression model. For different noise distributions, we analytically compute asymptotic efficiencies of LS-, LAD-, R-, M-, S-, and LTS- estimates. We give recommendations for practical applications of these methods for different noise distributions in the model. We show examples on real datasets that support the advantages of robust estimates.
Keywords:
linear regression model, asymptotic relative efficiency, breakdown point, rank estimates, M-estimates, L-estimates, estimates with high breakdown point.
Citation:
E. R. Goryainova, E. A. Botvinkin, “Experimental and analytic comparison of the accuracy of different estimates of parameters in a linear regression model”, Avtomat. i Telemekh., 2017, no. 10, 109–129; Autom. Remote Control, 78:10 (2017), 1819–1836
Linking options:
https://www.mathnet.ru/eng/at14905 https://www.mathnet.ru/eng/at/y2017/i10/p109
|
Statistics & downloads: |
Abstract page: | 157 | Full-text PDF : | 69 | References: | 29 | First page: | 9 |
|