Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2017, Issue 7, Pages 95–109 (Mi at14834)  

This article is cited in 5 scientific papers (total in 5 papers)

Stochastic Systems

Linearization method for solving quantile optimization problems with loss function depending on a vector of small random parameters

S. N. Vasil'eva, Yu. S. Kan

Moscow Aviation Institute (National Research University), Moscow, Russia
Full-text PDF (738 kB) Citations (5)
References:
Abstract: We propose a method for solving quantile optimization problems with a loss function that depends on a vector of small random parameters. This method is based on using a model linearized with respect to the random vector instead of the original nonlinear loss function. We show that in first approximation, the quantile optimization problem reduces to a minimax problem where the uncertainty set is a kernel of a probability measure.
Keywords: quantile optimization, linearization method, vector of small random parameters, kernel of a probability measure.
Funding agency Grant number
Russian Science Foundation 16-11-00062
This work was supported by the Russian Foundation for Basic Research, project no. 16-11-00062.
Presented by the member of Editorial Board: A. I. Kibzun

Received: 24.06.2016
English version:
Automation and Remote Control, 2017, Volume 78, Issue 7, Pages 1251–1263
DOI: https://doi.org/10.1134/S0005117917070074
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. N. Vasil'eva, Yu. S. Kan, “Linearization method for solving quantile optimization problems with loss function depending on a vector of small random parameters”, Avtomat. i Telemekh., 2017, no. 7, 95–109; Autom. Remote Control, 78:7 (2017), 1251–1263
Citation in format AMSBIB
\Bibitem{VasKan17}
\by S.~N.~Vasil'eva, Yu.~S.~Kan
\paper Linearization method for solving quantile optimization problems with loss function depending on a~vector of small random parameters
\jour Avtomat. i Telemekh.
\yr 2017
\issue 7
\pages 95--109
\mathnet{http://mi.mathnet.ru/at14834}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3690168}
\elib{https://elibrary.ru/item.asp?id=29393177}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 7
\pages 1251--1263
\crossref{https://doi.org/10.1134/S0005117917070074}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405957000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85025078748}
Linking options:
  • https://www.mathnet.ru/eng/at14834
  • https://www.mathnet.ru/eng/at/y2017/i7/p95
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :50
    References:54
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024