Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2018, Issue 8, Pages 129–147 (Mi at14742)  

This article is cited in 3 scientific papers (total in 3 papers)

Optimization, System Analysis, and Operations Research

Deep learning model selection of suboptimal complexity

O. Yu. Bakhteeva, V. V. Strijovb

a Moscow Institute of Physics and Technology, Moscow, Russia
b Dorodnicyn Computing Centre, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We consider the problem of model selection for deep learning models of suboptimal complexity. The complexity of a model is understood as the minimum description length of the combination of the sample and the classification or regression model. Suboptimal complexity is understood as an approximate estimate of the minimum description length, obtained with Bayesian inference and variational methods. We introduce probabilistic assumptions about the distribution of parameters. Based on Bayesian inference, we propose the likelihood function of the model. To obtain an estimate for the likelihood, we apply variational methods with gradient optimization algorithms. We perform a computational experiment on several samples.
Keywords: classification, regression, deep learning, model selection, Bayesian inference, variational inference, complexity.
Funding agency Grant number
Russian Foundation for Basic Research 16-07-01154
Ministry of Education and Science of the Russian Federation 05.Y09.21.0018
This work was supported by the Russian Foundation for Basic Research, project no. 16-37-00488 and the Russian Federation governmental contract no. 05.Y09.21.0018.
Presented by the member of Editorial Board: F. T. Aleskerov

Received: 02.04.2017
English version:
Automation and Remote Control, 2018, Volume 79, Issue 8, Pages 1474–1488
DOI: https://doi.org/10.1134/S000511791808009X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. Yu. Bakhteev, V. V. Strijov, “Deep learning model selection of suboptimal complexity”, Avtomat. i Telemekh., 2018, no. 8, 129–147; Autom. Remote Control, 79:8 (2018), 1474–1488
Citation in format AMSBIB
\Bibitem{BakStr18}
\by O.~Yu.~Bakhteev, V.~V.~Strijov
\paper Deep learning model selection of suboptimal complexity
\jour Avtomat. i Telemekh.
\yr 2018
\issue 8
\pages 129--147
\mathnet{http://mi.mathnet.ru/at14742}
\elib{https://elibrary.ru/item.asp?id=35730323}
\transl
\jour Autom. Remote Control
\yr 2018
\vol 79
\issue 8
\pages 1474--1488
\crossref{https://doi.org/10.1134/S000511791808009X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000441743800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85051549048}
Linking options:
  • https://www.mathnet.ru/eng/at14742
  • https://www.mathnet.ru/eng/at/y2018/i8/p129
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :92
    References:37
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024