Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2019, Issue 1, Pages 126–137
DOI: https://doi.org/10.1134/S0005231019010094
(Mi at14669)
 

This article is cited in 10 scientific papers (total in 10 papers)

Optimization, System Analysis, and Operations Research

On the properties of the method of minimization for convex functions with relaxation on the distance to extremum

V. N. Krutikov, N. S. Samoilenko, V. V. Meshechkin

Kemerovo State University, Kemerovo, Russia
References:
Abstract: We present a subgradient method of minimization, similar to the method of minimal iterations for solving systems of equations, which inherits from the latter convergence properties on quadratic functions. The proposed algorithm, for a certain set of parameters, coincides with the previously known method of minimizing piecewise linear functions and is an element of the family of minimization methods with relaxation of the distance to extremum, developed by B.T. Polyak, where the step length is calculated based on the predefined minimum value of the function. We link parameters of this method to the constraint on the degree of homogeneity of the function and obtain estimates on its convergence rate on convex functions. We prove that on some classes of functions it converges at the rate of a geometric progression. We also discuss the computational capabilities of this approach for solving problems with high dimension.
Keywords: subgradient, convex function, linear algebra, minimum of a function, convergence rate.
Presented by the member of Editorial Board: B. T. Polyak

Received: 15.02.2017
Revised: 15.03.2018
Accepted: 08.11.2018
English version:
Automation and Remote Control, 2019, Volume 80, Issue 1, Pages 102–111
DOI: https://doi.org/10.1134/S0005117919010090
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Krutikov, N. S. Samoilenko, V. V. Meshechkin, “On the properties of the method of minimization for convex functions with relaxation on the distance to extremum”, Avtomat. i Telemekh., 2019, no. 1, 126–137; Autom. Remote Control, 80:1 (2019), 102–111
Citation in format AMSBIB
\Bibitem{KruSamMes19}
\by V.~N.~Krutikov, N.~S.~Samoilenko, V.~V.~Meshechkin
\paper On the properties of the method of minimization for convex functions with relaxation on the distance to extremum
\jour Avtomat. i Telemekh.
\yr 2019
\issue 1
\pages 126--137
\mathnet{http://mi.mathnet.ru/at14669}
\crossref{https://doi.org/10.1134/S0005231019010094}
\elib{https://elibrary.ru/item.asp?id=37135090}
\transl
\jour Autom. Remote Control
\yr 2019
\vol 80
\issue 1
\pages 102--111
\crossref{https://doi.org/10.1134/S0005117919010090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000463630500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85063929487}
Linking options:
  • https://www.mathnet.ru/eng/at14669
  • https://www.mathnet.ru/eng/at/y2019/i1/p126
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024