|
Avtomatika i Telemekhanika, 2017, Issue 1, Pages 106–120
(Mi at14660)
|
|
|
|
This article is cited in 8 scientific papers (total in 8 papers)
Intellectual Control Systems
Models of latent consensus
R. P. Agaev, P. Yu. Chebotarev Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
Abstract:
The paper studies the problem of achieving consensus in multi-agent systems in the case where the dependency digraph $\Gamma$ has no spanning in-tree. We consider the regularization protocol that amounts to the addition of a dummy agent (hub) uniformly connected to the agents. The presence of such a hub guarantees the achievement of an asymptotic consensus. For the “evaporation” of the dummy agent, the strength of its influences on the other agents vanishes, which leads to the concept of latent consensus. We obtain a closed-form expression for the consensus when the connections of the hub are symmetric; in this case, the impact of the hub upon the consensus remains fixed. On the other hand, if the hub is essentially influenced by the agents, whereas its influence on them tends to zero, then the consensus is expressed by the scalar product of the vector of column means of the Laplacian eigenprojection of $\Gamma$ and the initial state vector of the system. Another protocol, which assumes the presence of vanishingly weak uniform background links between the agents, leads to the same latent consensus.
Keywords:
consensus, multi-agent system, decentralized control, regularization, eigenprojection, DeGroot's iterative pooling, PageRank, Laplacian matrix of a digraph.
Citation:
R. P. Agaev, P. Yu. Chebotarev, “Models of latent consensus”, Avtomat. i Telemekh., 2017, no. 1, 106–120; Autom. Remote Control, 78:1 (2017), 88–99
Linking options:
https://www.mathnet.ru/eng/at14660 https://www.mathnet.ru/eng/at/y2017/i1/p106
|
Statistics & downloads: |
Abstract page: | 502 | Full-text PDF : | 145 | References: | 69 | First page: | 38 |
|