Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2017, Issue 1, Pages 91–105 (Mi at14659)  

This article is cited in 5 scientific papers (total in 5 papers)

System Analysis and Operations Research

Selecting an optimal model for forecasting the volumes of railway goods transportation

K. V. Rudakova, V. V. Strizhova, D. O. Kashirina, M. P. Kuznetsovb, A. P. Motrenkob, M. M. Steninab

a Dorodnicyn Computing Centre, Russian Academy of Sciences, Moscow, Russia
b Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
References:
Abstract: Consideration was given to selection of an optimal model of short-term forecasting of the volumes of railway transport from the historical and exogenous time series. The historical data carry information about the transportation volumes of various goods between pairs of stations. It was assumed that the result of selecting an optimal model depends on the level of aggregation in the types of goods, departure and destination points, and time. Considered were the models of vector autoregression, integrated model of the autoregressive moving average, and a nonparametric model of histogram forecasting. Criteria for comparison of the forecasts on the basis of distances between the errors of model forecasts were proposed. They are used to analyze the models with the aim of determining the admissible requests for forecast, the actual forecast depth included.
Keywords: time series forecast, cargo railway transportation, selection of the forecast model.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation RFMEFI60414X0041
The work was supported by the Ministry of Education and Science of the Russian Federation (Agreement no. RFMEFI60414X0041).
Presented by the member of Editorial Board: A. A. Lazarev

Received: 12.01.2015
English version:
Automation and Remote Control, 2017, Volume 78, Issue 1, Pages 75–87
DOI: https://doi.org/10.1134/S0005117917010064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. V. Rudakov, V. V. Strizhov, D. O. Kashirin, M. P. Kuznetsov, A. P. Motrenko, M. M. Stenina, “Selecting an optimal model for forecasting the volumes of railway goods transportation”, Avtomat. i Telemekh., 2017, no. 1, 91–105; Autom. Remote Control, 78:1 (2017), 75–87
Citation in format AMSBIB
\Bibitem{RudStrKas17}
\by K.~V.~Rudakov, V.~V.~Strizhov, D.~O.~Kashirin, M.~P.~Kuznetsov, A.~P.~Motrenko, M.~M.~Stenina
\paper Selecting an optimal model for forecasting the volumes of railway goods transportation
\jour Avtomat. i Telemekh.
\yr 2017
\issue 1
\pages 91--105
\mathnet{http://mi.mathnet.ru/at14659}
\elib{https://elibrary.ru/item.asp?id=28317449}
\transl
\jour Autom. Remote Control
\yr 2017
\vol 78
\issue 1
\pages 75--87
\crossref{https://doi.org/10.1134/S0005117917010064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000394180700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011846587}
Linking options:
  • https://www.mathnet.ru/eng/at14659
  • https://www.mathnet.ru/eng/at/y2017/i1/p91
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :440
    References:57
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024