Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2016, Issue 9, Pages 96–123 (Mi at14552)  

This article is cited in 10 scientific papers (total in 10 papers)

Stochastic Systems, Queuing Systems

Optimal control problem regularization for the Markov process with finite number of states and constraints

B. M. Millera, G. B. Millerb, K. V. Siemenikhinc

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, Russia
c Moscow State Aviation Institute, Moscow, Russia
References:
Abstract: The optimal control problem is considered for a system given by the Markov chain with integral constraints. It is shown that the solution to the optimal control problem on the set of all predictable controls satisfies Markov property. This optimal Markov control can be obtained as a solution of the corresponding dual problem (in case if the regularity condition holds) or (in other case) by means of proposed regularization method. The problems arising due to the system nonregularity along with the way to cope with those problems are illustrated by an example of optimal control problem for a single channel queueing system.
Funding agency Grant number
Russian Foundation for Basic Research 16-07-00677-А
15-37-20611-мол_а_вед
Russian Science Foundation 14-50-00150
The study of G. B. Miller and K. V. Semenikhin was supported by the Russian Foundation for Basic Research, projects nos. 16-07-00677-A and 15-37-20611-mol a ved.
That of B. M. Miller was supported by the Russian Scientific Foundation, project no. 14-50-00150. B. M. Miller proved convexity of the set of criteria values, as well as the assertions relating to the with consistency of constraints and optimal control problem, Sections 5 and 6.
Presented by the member of Editorial Board: A. B. Tsybakov

Received: 26.04.2015
English version:
Automation and Remote Control, 2016, Volume 77, Issue 9, Pages 1589–1611
DOI: https://doi.org/10.1134/S0005117916090071
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. M. Miller, G. B. Miller, K. V. Siemenikhin, “Optimal control problem regularization for the Markov process with finite number of states and constraints”, Avtomat. i Telemekh., 2016, no. 9, 96–123; Autom. Remote Control, 77:9 (2016), 1589–1611
Citation in format AMSBIB
\Bibitem{MilMilSem16}
\by B.~M.~Miller, G.~B.~Miller, K.~V.~Siemenikhin
\paper Optimal control problem regularization for the Markov process with finite number of states and constraints
\jour Avtomat. i Telemekh.
\yr 2016
\issue 9
\pages 96--123
\mathnet{http://mi.mathnet.ru/at14552}
\elib{https://elibrary.ru/item.asp?id=27182855}
\transl
\jour Autom. Remote Control
\yr 2016
\vol 77
\issue 9
\pages 1589--1611
\crossref{https://doi.org/10.1134/S0005117916090071}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000383104300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84986888459}
Linking options:
  • https://www.mathnet.ru/eng/at14552
  • https://www.mathnet.ru/eng/at/y2016/i9/p96
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :89
    References:60
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024