Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2016, Issue 1, Pages 50–71 (Mi at14349)  

This article is cited in 24 scientific papers (total in 24 papers)

Topical issue

Robust filtering for a class of nonlinear stochastic systems with probability constraints

Lifeng Maa, Zidong Wangbc, Hak-Keung Lamd, Fuad E. Alsaadic, Xiaohui Liub

a School of Automation, Nanjing Univerity of Science and Technology, Nanjing, China
b Brunel University London, Uxbridge, Middlesex, United Kingdom
c King Abdulaziz University, Jeddah, Saudi Arabia
d King's College London, Strand Campus, United Kingdom
References:
Abstract: This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established, in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method.
Funding agency Grant number
Royal Society
National Natural Science Foundation of China 61304010
61329301
Natural Science Foundation of Jiangsu Province BK20130766
Research Fund for the Doctoral Program of Higher Education of China 2014M551598
China Postdoctoral Science Foundation
Alexander von Humboldt-Stiftung
Presented by the member of Editorial Board: O. A. Stepanov

Received: 30.03.2015
English version:
Automation and Remote Control, 2016, Volume 77, Issue 1, Pages 37–54
DOI: https://doi.org/10.1134/S0005117916010033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Lifeng Ma, Zidong Wang, Hak-Keung Lam, Fuad E. Alsaadi, Xiaohui Liu, “Robust filtering for a class of nonlinear stochastic systems with probability constraints”, Avtomat. i Telemekh., 2016, no. 1, 50–71; Autom. Remote Control, 77:1 (2016), 37–54
Citation in format AMSBIB
\Bibitem{MaWanLam16}
\by Lifeng~Ma, Zidong~Wang, Hak-Keung~Lam, Fuad~E.~Alsaadi, Xiaohui~Liu
\paper Robust filtering for a~class of nonlinear stochastic systems with probability constraints
\jour Avtomat. i Telemekh.
\yr 2016
\issue 1
\pages 50--71
\mathnet{http://mi.mathnet.ru/at14349}
\elib{https://elibrary.ru/item.asp?id=25996271}
\transl
\jour Autom. Remote Control
\yr 2016
\vol 77
\issue 1
\pages 37--54
\crossref{https://doi.org/10.1134/S0005117916010033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000370332800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84955160600}
Linking options:
  • https://www.mathnet.ru/eng/at14349
  • https://www.mathnet.ru/eng/at/y2016/i1/p50
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024