Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2015, Issue 2, Pages 73–88 (Mi at14186)  

This article is cited in 1 scientific paper (total in 1 paper)

Robust and Adaptive Systems

Robust stability and evaluation of the quality functional for nonlinear control systems

A. G. Mazko

Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, Ukraine
Full-text PDF (268 kB) Citations (1)
References:
Abstract: We develop new methods of robust stability analysis for equilibrium states and optimization of nonlinear feedback control systems. For a family of nonlinear systems with uncertain matrices of coefficients and measurable output feedback we formulate sufficient stability conditions for the zero state with a general quadratic Lyapunov function. We propose a solution for the general robust stabilization and estimation problem for a quadratic performance index for a family of nonlinear systems. We show an example of a stabilization system for a single-link robot manipulator.
Presented by the member of Editorial Board: P. S. Shcherbakov

Received: 17.04.2012
English version:
Automation and Remote Control, 2015, Volume 76, Issue 2, Pages 251–263
DOI: https://doi.org/10.1134/S0005117915020058
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Mazko, “Robust stability and evaluation of the quality functional for nonlinear control systems”, Avtomat. i Telemekh., 2015, no. 2, 73–88; Autom. Remote Control, 76:2 (2015), 251–263
Citation in format AMSBIB
\Bibitem{Maz15}
\by A.~G.~Mazko
\paper Robust stability and evaluation of the quality functional for nonlinear control systems
\jour Avtomat. i Telemekh.
\yr 2015
\issue 2
\pages 73--88
\mathnet{http://mi.mathnet.ru/at14186}
\elib{https://elibrary.ru/item.asp?id=23216488}
\transl
\jour Autom. Remote Control
\yr 2015
\vol 76
\issue 2
\pages 251--263
\crossref{https://doi.org/10.1134/S0005117915020058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000351233600005}
\elib{https://elibrary.ru/item.asp?id=24553561}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922796448}
Linking options:
  • https://www.mathnet.ru/eng/at14186
  • https://www.mathnet.ru/eng/at/y2015/i2/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024