Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2009, Issue 1, Pages 147–161 (Mi at14)  

This article is cited in 17 scientific papers (total in 17 papers)

Adaptive and Robust Systems

Robust filtering under nonrandom disturbances: The invariant ellipsoid approach

M. V. Khlebnikov

Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We present a simple and universal observer-based approach to solving the problem of robust filtering of unknown-but-bounded exogenous disturbances. The heart of this approach is the method of invariant ellipsoids. Application of this technique allows for a reformulation of the original problem in terms of linear matrix inequalities with reduction to semidefinite programming and one-dimensional optimization, which are easy to solve numerically. Continuous-time and discrete-time cases are studied in equal detail. The efficacy of the approach is demonstrated via the double pendulum example.
Presented by the member of Editorial Board: A. P. Kurdyukov

Received: 16.10.2007
English version:
Automation and Remote Control, 2009, Volume 70, Issue 1, Pages 133–146
DOI: https://doi.org/10.1134/S000511790901010X
Bibliographic databases:
Document Type: Article
PACS: 02.30.Yy
Language: Russian
Citation: M. V. Khlebnikov, “Robust filtering under nonrandom disturbances: The invariant ellipsoid approach”, Avtomat. i Telemekh., 2009, no. 1, 147–161; Autom. Remote Control, 70:1 (2009), 133–146
Citation in format AMSBIB
\Bibitem{Khl09}
\by M.~V.~Khlebnikov
\paper Robust filtering under nonrandom disturbances: The invariant ellipsoid approach
\jour Avtomat. i Telemekh.
\yr 2009
\issue 1
\pages 147--161
\mathnet{http://mi.mathnet.ru/at14}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2510678}
\zmath{https://zbmath.org/?q=an:1163.93362}
\transl
\jour Autom. Remote Control
\yr 2009
\vol 70
\issue 1
\pages 133--146
\crossref{https://doi.org/10.1134/S000511790901010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000263843600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-59849114259}
Linking options:
  • https://www.mathnet.ru/eng/at14
  • https://www.mathnet.ru/eng/at/y2009/i1/p147
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :235
    References:62
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024