Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2011, Issue 2, Pages 111–130 (Mi at1289)  

This article is cited in 29 scientific papers (total in 29 papers)

Topical issue

Methods to design optimal control of Markov process with finite state set in the presence of constraints

B. M. Millera, G. B. Millerb, K. V. Semenikhinc

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
b Institute of Informatics Problems, Russian Academy of Sciences, Moscow, Russia
c Moscow State Aviation Institute, Moscow, Russia
References:
Abstract: The problem of optimal control of a nonuniform Markov process with a finite state set over a fixed interval in the presence of inequality-like constraints was considered. The design of control relies on the principle of dynamic programming in combination with the methods of convex programming and the duality theory. Two types of conditions under which it is possible to select a Markov optimal control were proposed.
Presented by the member of Editorial Board: A. I. Kibzun

Received: 15.06.2010
English version:
Automation and Remote Control, 2011, Volume 72, Issue 2, Pages 323–341
DOI: https://doi.org/10.1134/S000511791102010X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. M. Miller, G. B. Miller, K. V. Semenikhin, “Methods to design optimal control of Markov process with finite state set in the presence of constraints”, Avtomat. i Telemekh., 2011, no. 2, 111–130; Autom. Remote Control, 72:2 (2011), 323–341
Citation in format AMSBIB
\Bibitem{MilMilSem11}
\by B.~M.~Miller, G.~B.~Miller, K.~V.~Semenikhin
\paper Methods to design optimal control of Markov process with finite state set in the presence of constraints
\jour Avtomat. i Telemekh.
\yr 2011
\issue 2
\pages 111--130
\mathnet{http://mi.mathnet.ru/at1289}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2814106}
\zmath{https://zbmath.org/?q=an:1231.93118}
\elib{https://elibrary.ru/item.asp?id=15645693}
\transl
\jour Autom. Remote Control
\yr 2011
\vol 72
\issue 2
\pages 323--341
\crossref{https://doi.org/10.1134/S000511791102010X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287660400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79954540057}
Linking options:
  • https://www.mathnet.ru/eng/at1289
  • https://www.mathnet.ru/eng/at/y2011/i2/p111
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
    Statistics & downloads:
    Abstract page:752
    Full-text PDF :213
    References:65
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024