Abstract:
Consideration was given to a class of systems of nonlinear differential equations with retarded argument. It was assumed that in the absence of delay the zero solutions of the systems under study are asymptotically stable. Using the method of Lyapunov functions in the form of B. S. Razumikhin, it was proved that if the right-hand sides of these equations are free of the linear terms relative to the phase variables, then the asymptotic stability is retained for any delay.
Presented by the member of Editorial Board:L. B. Rapoport
Citation:
A. Yu. Aleksandrov, A. P. Zhabko, “On stability of the solutions of a class of nonlinear delay systems”, Avtomat. i Telemekh., 2006, no. 9, 3–14; Autom. Remote Control, 67:9 (2006), 1355–1365
\Bibitem{AleZha06}
\by A.~Yu.~Aleksandrov, A.~P.~Zhabko
\paper On stability of the solutions of a~class of nonlinear delay systems
\jour Avtomat. i Telemekh.
\yr 2006
\issue 9
\pages 3--14
\mathnet{http://mi.mathnet.ru/at1230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2266466}
\zmath{https://zbmath.org/?q=an:1194.34139}
\transl
\jour Autom. Remote Control
\yr 2006
\vol 67
\issue 9
\pages 1355--1365
\crossref{https://doi.org/10.1134/S0005117906090013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33749039463}
Linking options:
https://www.mathnet.ru/eng/at1230
https://www.mathnet.ru/eng/at/y2006/i9/p3
This publication is cited in the following 20 articles:
Alexander Aleksandrov, Natalya Andriyanova, “Stability analysis of Lur'e indirect control systems with time delay and multiple nonlinearities”, Int. J. Dynam. Control, 11:6 (2023), 3074
Aleksandrov A., Andriyanova N., Efimov D., “Stability Analysis of Persidskii Time-Delay Systems With Synchronous and Asynchronous Switching”, Int. J. Robust Nonlinear Control, 32:6 (2022), 3266–3280
Alexander Aleksandrov, Denis Efimov, “Averaging method for the stability analysis of strongly nonlinear mechanical systems”, Automatica, 146 (2022), 110576
V. V. Provotorov, S. M. Sergeev, A. A. Part, “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 15:1 (2019), 107–117
Aleksandrov A.Yu., Aleksandrova E.B., “Delay-Independent Stability Conditions For a Class of Nonlinear Difference Systems”, J. Frankl. Inst.-Eng. Appl. Math., 355:7 (2018), 3367–3380
Aleksandrov A.Yu. Aleksandrova E.B. Tikhonov A.A., “On the Monoaxial Stabilization of a Rigid Body Under Vanishing Restoring Torque”, Eighth Polyakhov'S Reading, AIP Conference Proceedings, 1959, ed. Kustova E. Leonov G. Morosov N. Yushkov M. Mekhonoshina M., Amer Inst Physics, 2018, UNSP 080001-1
Aleksandrov A.Yu. Zhabko A.P. Chen Y., “Stability Analysis of Gyroscopic Systems With Delay Via Decomposition”, Eighth Polyakhov'S Reading, AIP Conference Proceedings, 1959, ed. Kustova E. Leonov G. Morosov N. Yushkov M. Mekhonoshina M., Amer Inst Physics, 2018, UNSP 080002-1
Alexander Aleksandrov, Yangzhou Chen, 2018 14th International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference) (STAB), 2018, 1
V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier–Stokes system in a netlike domain”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 13:4 (2017), 431–443
Ekimov A.V., Balykina Yu.E., Svirkin M.V., “Analysis of Attainability Sets of Bilinear Control Systems”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016), AIP Conference Proceedings, 1863, eds. Simos T., Tsitouras C., Amer Inst Physics, 2017, UNSP 170012-1
Aleksandrov A.Yu. Aleksandrova E.B., “Convergence Conditions For Some Classes of Nonlinear Systems”, Syst. Control Lett., 104 (2017), 72–77
Talebi S., Ataei M., Ekramian M., “Guaranteed Interval of Delay For a Class of Non-Linear Control Systems”, Trans. Inst. Meas. Control, 38:3 (2016), 364–369
Srinivasan V., Sukavanam N., “Asymptotic Stability and Stabilizability of Nonlinear Systems With Delay”, ISA Trans., 65 (2016), 19–26
Sayed M., Mousa A.A., Alzaharani D.Y., “Non-Linear Time Delay Saturation Controller For Reduction of a Non-Linear Vibrating System Via 1:4 Internal Resonance”, J. Vibroeng., 18:4 (2016), 2515–2536
S. L. Podvalnyi, V. V. Provotorov, “Startovoe upravlenie parabolicheskoi sistemoi s raspredelennymi parametrami na grafe”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2015, no. 3, 126–142
Wang M., Chen B., “Stability Analysis For a Class of Delayed Neural Networks With Nonlinear Homogeneous Activation Functions”, 2015 Sixth International Conference on Intelligent Control and Information Processing (Icicip), IEEE, 2015, 30–35
Malafeyev O.A., Nemnyugin S.A., Ivaniukovich G.A., “Stochastic Models of Social-Economic Dynamics”, 2015 International Conference “Stability and Control Processes” in Memory of V.i. Zubov (Scp), eds. Petrosyan L., Zhabko A., IEEE, 2015, 483–485
Oleg A. Malafeyev, Sergey A. Nemnyugin, Georgy A. Ivaniukovich, 2015 International Conference “Stability and Control Processes” in Memory of V.I. Zubov (SCP), 2015, 483
Aleksandrov A.Yu., Hu G.-D., Zhabko A.P., “Delay-Independent Stability Conditions For Some Classes of Nonlinear Systems”, IEEE Trans. Autom. Control, 59:8 (2014), 2209–2214