Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2005, Volume 44, Number 2, Pages 148–172 (Mi al99)  

This article is cited in 24 scientific papers (total in 24 papers)

Local Structure of Rogers Semilattices of $\Sigma^0_n$-Computable Numberings

S. Yu. Podzorov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: We deal in specific features of the algebraic structure of Rogers semilattices of $\Sigma^0_n$ – computable numberings, for $n\geqslant2$. It is proved that any Lachlan semilattice is embeddable (as an ideal) in such every semilattice, and that over an arbitrary non $0'$-principal element of such a lattice, any Lachlan semilattice is embeddable (as an interval) in it.
Keywords: Rogers semilattice, Lachlan semilattice, $\Sigma^0_n$-computable numbering.
Received: 23.04.2004
English version:
Algebra and Logic, 2005, Volume 44, Issue 1, Pages 82–94
DOI: https://doi.org/10.1007/s10469-005-0010-3
Bibliographic databases:
UDC: 510.5
Language: Russian
Citation: S. Yu. Podzorov, “Local Structure of Rogers Semilattices of $\Sigma^0_n$-Computable Numberings”, Algebra Logika, 44:2 (2005), 148–172; Algebra and Logic, 44:1 (2005), 82–94
Citation in format AMSBIB
\Bibitem{Pod05}
\by S.~Yu.~Podzorov
\paper Local Structure of Rogers Semilattices of~$\Sigma^0_n$-Computable Numberings
\jour Algebra Logika
\yr 2005
\vol 44
\issue 2
\pages 148--172
\mathnet{http://mi.mathnet.ru/al99}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2170694}
\zmath{https://zbmath.org/?q=an:1104.03038}
\transl
\jour Algebra and Logic
\yr 2005
\vol 44
\issue 1
\pages 82--94
\crossref{https://doi.org/10.1007/s10469-005-0010-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18244400091}
Linking options:
  • https://www.mathnet.ru/eng/al99
  • https://www.mathnet.ru/eng/al/v44/i2/p148
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:445
    Full-text PDF :139
    References:75
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024