Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 5, Pages 603–613 (Mi al95)  

This article is cited in 6 scientific papers (total in 7 papers)

Constructible Matrix Groups

V. A. Roman'kov, N. G. Khisamiev
Full-text PDF (160 kB) Citations (7)
References:
Abstract: We prove that the additive group of a ring $K$ is constructible if the group $GL_2(K)$ is constructible. It is stated that under one extra condition on $K$, the constructibility of $GL_2(K)$ implies that $K$ is constructible as a module over its subring $L$ generated by all invertible elements of the ring $K$; this is true, in particular, if $K$ coincides with $L$, for instance, if $K$ is a field or a group ring of an Abelian group with the specified property. We construct an example of a commutative associative ring $K$ with 1 such that its multiplicative group $K^{\ast}$ is constructible but its additive group is not. It is shown that for a constructible group $G$ represented by matrices over a field, the factors w. r. t. members of the upper central series are also constructible. It is proved that a free product of constructible groups is again constructible, and conditions are specified under which relevant statements hold of free products with amalgamated subgroup; this is true, in particular, for the case where an amalgamated subgroup is finite. Also we give an example of a constructible group $GL_2(K)$ with a non-constructible ring $K$. Similar results are valid for the case where the group $SL_2(K)$ is treated in place of $GL_2(K)$.
Keywords: constructible matrix group, commutative associative ring.
Received: 23.05.2003
English version:
Algebra and Logic, 2004, Volume 43, Issue 5, Pages 339–345
DOI: https://doi.org/10.1023/B:ALLO.0000044283.43092.0b
Bibliographic databases:
UDC: 512.540+510.5
Language: Russian
Citation: V. A. Roman'kov, N. G. Khisamiev, “Constructible Matrix Groups”, Algebra Logika, 43:5 (2004), 603–613; Algebra and Logic, 43:5 (2004), 339–345
Citation in format AMSBIB
\Bibitem{RomKhi04}
\by V.~A.~Roman'kov, N.~G.~Khisamiev
\paper Constructible Matrix Groups
\jour Algebra Logika
\yr 2004
\vol 43
\issue 5
\pages 603--613
\mathnet{http://mi.mathnet.ru/al95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2112062}
\zmath{https://zbmath.org/?q=an:1080.20045}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 5
\pages 339--345
\crossref{https://doi.org/10.1023/B:ALLO.0000044283.43092.0b}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846613430}
Linking options:
  • https://www.mathnet.ru/eng/al95
  • https://www.mathnet.ru/eng/al/v43/i5/p603
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:385
    Full-text PDF :97
    References:73
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024