Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 1, Pages 101–115
DOI: https://doi.org/10.33048/alglog.2020.59.106
(Mi al937)
 

This article is cited in 1 scientific paper (total in 1 paper)

Semifield planes admitting the quaternion group $Q_8$

O. V. Kravtsova

Siberian Federal University, Krasnoyarsk
Full-text PDF (247 kB) Citations (1)
References:
Abstract: We discuss a well-known conjecture that the full automorphism group of a finite projective plane coordinatized by a semifield is solvable. For a semifield plane of order $p^N$ ($p>2$ is a prime, $4\vert p-1$) admitting an autotopism subgroup $H$ isomorphic to the quaternion group $Q_8$, we construct a matrix representation of $H$ and a regular set of the plane. All nonisomorphic semifield planes of orders $5^4$ and $13^4$ admitting $Q_8$ in the autotopism group are pointed out. It is proved that a semifield plane of order $p^4$, $4\vert p-1$, does not admit $SL(2,5)$ in the autotopism group.
Keywords: semifield plane, autotopism group, quaternion group, Baire involution, homology, regular set.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00566_а
Supported by RFBR, project No. 19-01-00566 a.
Received: 19.05.2019
Revised: 30.04.2020
English version:
Algebra and Logic, 2020, Volume 59, Issue 1, Pages 71–81
DOI: https://doi.org/10.1007/s10469-020-09583-y
Bibliographic databases:
Document Type: Article
UDC: 519.145
Language: Russian
Citation: O. V. Kravtsova, “Semifield planes admitting the quaternion group $Q_8$”, Algebra Logika, 59:1 (2020), 101–115; Algebra and Logic, 59:1 (2020), 71–81
Citation in format AMSBIB
\Bibitem{Kra20}
\by O.~V.~Kravtsova
\paper Semifield planes admitting the quaternion group $Q_8$
\jour Algebra Logika
\yr 2020
\vol 59
\issue 1
\pages 101--115
\mathnet{http://mi.mathnet.ru/al937}
\crossref{https://doi.org/10.33048/alglog.2020.59.106}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 1
\pages 71--81
\crossref{https://doi.org/10.1007/s10469-020-09583-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000534860600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085329026}
Linking options:
  • https://www.mathnet.ru/eng/al937
  • https://www.mathnet.ru/eng/al/v59/i1/p101
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :18
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024