Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 1, Pages 84–100
DOI: https://doi.org/10.33048/alglog.2020.59.105
(Mi al936)
 

This article is cited in 4 scientific papers (total in 4 papers)

Lattice isomorphisms of finite local rings

S. S. Korobkov

Urals State Pedagogical University, Ekaterinburg
Full-text PDF (231 kB) Citations (4)
References:
Abstract: Associative rings are considered. By a lattice isomorphism, or projection, of a ring $R$ onto a ring $R^{\varphi}$ we mean an isomorphism $\varphi$ of the subring lattice $L(R)$ of $R$ onto the subring lattice $L(R^{\varphi})$ of $R^{\varphi}$. In this case $R^{\varphi}$ is called the projective image of a ring $R$ and $R$ is called the projective preimage of a ring $R^{\varphi}$. Let $R$ be a finite ring with identity and ${\rm Rad}\,R$ the Jacobson radical of $R$. A ring $R$ is said to be local if the factor ring $R/{\rm Rad}\,R$ is a field. We study lattice isomorphisms of finite local rings. It is proved that the projective image of a finite local ring which is distinct from $GF(p^{q^n})$ and has a nonprime residue ring is a finite local ring. For the case where both $R$ and $R^{\varphi}$ are local rings, we examine interrelationships between the properties of the rings.
Keywords: finite local rings, lattice isomorphisms of associative rings.
Received: 24.12.2018
Revised: 30.04.2020
English version:
Algebra and Logic, 2020, Volume 59, Issue 1, Pages 59–70
DOI: https://doi.org/10.1007/s10469-020-09579-8
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: S. S. Korobkov, “Lattice isomorphisms of finite local rings”, Algebra Logika, 59:1 (2020), 84–100; Algebra and Logic, 59:1 (2020), 59–70
Citation in format AMSBIB
\Bibitem{Kor20}
\by S.~S.~Korobkov
\paper Lattice isomorphisms of finite local rings
\jour Algebra Logika
\yr 2020
\vol 59
\issue 1
\pages 84--100
\mathnet{http://mi.mathnet.ru/al936}
\crossref{https://doi.org/10.33048/alglog.2020.59.105}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 1
\pages 59--70
\crossref{https://doi.org/10.1007/s10469-020-09579-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000534700100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085329213}
Linking options:
  • https://www.mathnet.ru/eng/al936
  • https://www.mathnet.ru/eng/al/v59/i1/p84
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :16
    References:26
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024