Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 1, Pages 66–83
DOI: https://doi.org/10.33048/alglog.2020.59.104
(Mi al935)
 

This article is cited in 3 scientific papers (total in 3 papers)

Computable positive and Friedberg numberings in hyperarithmetic

I. Sh. Kalimullina, V. G. Puzarenkobc, M. Kh. Faizrakhmanova

a Kazan (Volga Region) Federal University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University
Full-text PDF (274 kB) Citations (3)
References:
Abstract: We point out an existence criterion for positive computable total $\Pi^1_1$-numberings of families of subsets of a given $\Pi^1_1$-set. In particular, it is stated that the family of all $\Pi^1_1$-sets has no positive computable total $\Pi^1_1$-numberings. Also we obtain a criterion of existence for computable Friedberg $\Sigma^1_1$-numberings of families of subsets of a given $\Sigma^1_1$-set, the consequence of which is the absence of a computable Friedberg $\Sigma^1_1$-numbering of the family of all $\Sigma^1_1$-sets. Questions concerning the existence of negative computable $\Pi^1_1$- and $\Sigma^1_1$-numberings of the families mentioned are considered.
Keywords: computable numbering, admissible set, analytical hierarchy, positive numbering, Friedberg numbering, negative numbering.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00574_а
18-01-00624_а
Ministry of Education and Science of the Russian Federation 1.451.2016/1.4
Siberian Branch of Russian Academy of Sciences I.1.1., проект № 0314-2019-0003
Russian Science Foundation 18-11-00028
Supported by RFBR (project No. 18-01-00574) and by the Russian Ministry of Education and Science (project No. 1.451.2016/1.4). Supported by RFBR (project No. 18-01-00624) and by SB RAS Fundamental Research Program I.1.1 (project No. 0314-2019-0003). Supported by Russian Science Foundation, project No. 18-11-00028.
Received: 28.10.2018
Revised: 30.04.2018
English version:
Algebra and Logic, 2020, Volume 59, Issue 1, Pages 46–58
DOI: https://doi.org/10.1007/s10469-020-09578-9
Bibliographic databases:
Document Type: Article
UDC: 510.5
Language: Russian
Citation: I. Sh. Kalimullin, V. G. Puzarenko, M. Kh. Faizrakhmanov, “Computable positive and Friedberg numberings in hyperarithmetic”, Algebra Logika, 59:1 (2020), 66–83; Algebra and Logic, 59:1 (2020), 46–58
Citation in format AMSBIB
\Bibitem{KalPuzFai20}
\by I.~Sh.~Kalimullin, V.~G.~Puzarenko, M.~Kh.~Faizrakhmanov
\paper Computable positive and Friedberg numberings in hyperarithmetic
\jour Algebra Logika
\yr 2020
\vol 59
\issue 1
\pages 66--83
\mathnet{http://mi.mathnet.ru/al935}
\crossref{https://doi.org/10.33048/alglog.2020.59.104}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 1
\pages 46--58
\crossref{https://doi.org/10.1007/s10469-020-09578-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000534860600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087002640}
Linking options:
  • https://www.mathnet.ru/eng/al935
  • https://www.mathnet.ru/eng/al/v59/i1/p66
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :26
    References:40
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024