Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2020, Volume 59, Number 1, Pages 27–47
DOI: https://doi.org/10.33048/alglog.2020.59.102
(Mi al933)
 

This article is cited in 1 scientific paper (total in 1 paper)

Turing degrees and automorphism groups of substructure lattices

R. D. Dimitrova, V. S. Harizanovb, A. S. Morozovcd

a Dep. Math., Western Illinois Univ., Macomb, IL 61455, USA
b Dep. Math., George Washington Univ., Washington, DC 20052, USA
c Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
d Novosibirsk State University
Full-text PDF (299 kB) Citations (1)
References:
Abstract: The study of automorphisms of computable and other structures connects computability theory with classical group theory. Among the noncomputable countable structures, computably enumerable structures are one of the most important objects of investigation in computable model theory. Here we focus on the lattice structure of computably enumerable substructures of a given canonical computable structure. In particular, for a Turing degree $\mathbf{d}$, we investigate the groups of $\mathbf{d}$-computable automorphisms of the lattice of $\mathbf{d}$-computably enumerable vector spaces, of the interval Boolean algebra $\mathcal{B}_{\eta}$ of the ordered set of rationals, and of the lattice of $\mathbf{d}$-computably enumerable subalgebras of $\mathcal{B}_{\eta}$. For these groups, we show that Turing reducibility can be used to substitute the group-theoretic embedding. We also prove that the Turing degree of the isomorphism types for these groups is the second Turing jump $\mathbf{d^{\prime \prime }}$ of $\mathbf{d}$.
Keywords: automorphism, lattice of $\mathbf{d}$-enumerable vector subspaces, groups of $\mathbf{d}$-computable automorphisms, interval Boolean algebra of ordered set of rationals, Turing reducibility, Turing degree, Turing jump.
Funding agency Grant number
National Science Foundation DMS-1101123
Simons Foundation
Supported by the National Science Foundation, binational research grant DMS-1101123. Supported by the Simons Foundation Collaboration Grant and by CCFF and Dean’s Research Chair awards of the George Washington University.
Received: 06.03.2019
Revised: 30.04.2020
English version:
Algebra and Logic, 2020, Volume 59, Issue 1, Pages 18–32
DOI: https://doi.org/10.1007/s10469-020-09576-x
Bibliographic databases:
Document Type: Article
UDC: 510.65
Language: Russian
Citation: R. D. Dimitrov, V. S. Harizanov, A. S. Morozov, “Turing degrees and automorphism groups of substructure lattices”, Algebra Logika, 59:1 (2020), 27–47; Algebra and Logic, 59:1 (2020), 18–32
Citation in format AMSBIB
\Bibitem{DimHarMor20}
\by R.~D.~Dimitrov, V.~S.~Harizanov, A.~S.~Morozov
\paper Turing degrees and automorphism groups of substructure lattices
\jour Algebra Logika
\yr 2020
\vol 59
\issue 1
\pages 27--47
\mathnet{http://mi.mathnet.ru/al933}
\crossref{https://doi.org/10.33048/alglog.2020.59.102}
\transl
\jour Algebra and Logic
\yr 2020
\vol 59
\issue 1
\pages 18--32
\crossref{https://doi.org/10.1007/s10469-020-09576-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000534700100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085048490}
Linking options:
  • https://www.mathnet.ru/eng/al933
  • https://www.mathnet.ru/eng/al/v59/i1/p27
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :29
    References:35
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024