Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 5, Pages 574–608
DOI: https://doi.org/10.33048/alglog.2019.58.502
(Mi al917)
 

This article is cited in 1 scientific paper (total in 1 paper)

Classifications of definable subsets

S. Boyadzhiyskaa, K. Langeb, A. Razc, R. Scanlon, J. Wallbaum, X. Zhangd

a Berlin Math. School, Berlin, GERMANY
b Dep. Math., Wellesley College, 106 Central St., Wellesley, MA 02481, USA
c Dep. Math., Univ. Nebraska-Lincoln, 210 Avery Hall, Lincoln, NE 68588-0130, USA
d Dep. Philos., Princeton Univ., 1879 Hall, Princeton, NJ 08544, USA
Full-text PDF (383 kB) Citations (1)
References:
Abstract: Given a structure $\mathcal{M}$ over $\omega$ and a syntactic complexity class $\mathfrak{C}$, we say that a subset $A$ is $\mathfrak{C}$-definable in $\mathcal{M}$ if there exists a $\mathfrak{C}$-formula $\Theta(x)$ in the language of $\mathcal{M}$ such that for all $x\in\omega$, we have $x \in A$ iff $\Theta(x)$ is true in the structure. S. S. Goncharov and N. T. Kogabaev [Vestnik NGU, Mat., Mekh., Inf., 8, No. 4, 23-32 (2008)] generalized an idea proposed by Friedberg [J. Symb. Log., 23, No. 3, 309-316 (1958)], introducing the notion of a $\mathfrak{C}$-classification of $\mathcal{M}$: a computable list of $\mathfrak{C}$-formulas such that every $\mathfrak{C}$-definable subset is defined by a unique formula in the list. We study the connections among $\Sigma_1^0$-, $d$-$\Sigma_1^0$-, and $\Sigma_2^0$-classifications in the context of two families of structures, unbounded computable equivalence structures and unbounded computable injection structures. It is stated that every such injection structure has a $\Sigma_1^0$-classification, a $d$-$\Sigma_1^0$-classification, and a $\Sigma_2^0$-classification. In equivalence structures, on the other hand, we find a richer variety of possibilities.
Keywords: $\Sigma_1^0$-classification, $d$-$\Sigma_1^0$-classification, $\Sigma_2^0$-classification, unbounded computable equivalence structure, unbounded computable injection structure.
Funding agency Grant number
National Science Foundation DMS-1100604
DMS-0802961
Received: 08.05.2018
Revised: 26.11.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 5, Pages 383–404
DOI: https://doi.org/10.1007/s10469-019-09559-7
Bibliographic databases:
Document Type: Article
UDC: 510.54
Language: Russian
Citation: S. Boyadzhiyska, K. Lange, A. Raz, R. Scanlon, J. Wallbaum, X. Zhang, “Classifications of definable subsets”, Algebra Logika, 58:5 (2019), 574–608; Algebra and Logic, 58:5 (2019), 383–404
Citation in format AMSBIB
\Bibitem{BoyLanRaz19}
\by S.~Boyadzhiyska, K.~Lange, A.~Raz, R.~Scanlon, J.~Wallbaum, X.~Zhang
\paper Classifications of definable subsets
\jour Algebra Logika
\yr 2019
\vol 58
\issue 5
\pages 574--608
\mathnet{http://mi.mathnet.ru/al917}
\crossref{https://doi.org/10.33048/alglog.2019.58.502}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 5
\pages 383--404
\crossref{https://doi.org/10.1007/s10469-019-09559-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000500853400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85076199834}
Linking options:
  • https://www.mathnet.ru/eng/al917
  • https://www.mathnet.ru/eng/al/v58/i5/p574
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :30
    References:29
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024