Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 4, Pages 512–527
DOI: https://doi.org/10.33048/alglog.2019.58.407
(Mi al913)
 

Prime and homogeneous rings and algebras

E. I. Timoshenko

Novosibirsk State Technical University
References:
Abstract: Let $\mathcal M$ be a structure of a signature $\Sigma$. For any ordered tuple $\overline{a}=(a_1,\ldots,a_n)$ of elements of $\mathcal M$, $\mathrm{ tp}^{\mathcal M}(\overline{a})$ denotes the set of formulas $\theta(x_1,\ldots,x_n)$ of a first-order language over $\Sigma$ with free variables $x_1,\ldots,x_n$ such that $\mathcal M\models\theta(a_1,\ldots,a_n)$.
A structure $\mathcal M$ is said to be strongly $\omega$-homogeneous if, for any finite ordered tuples $\overline{a}$ and $\overline{b}$ of elements of $\mathcal M$, the coincidence of $\mathrm{ tp}^{\mathcal M}(\overline{a})$ and $\mathrm{ tp}^{\mathcal M}(\overline{b})$ implies that these tuples are mapped into each other (componentwise) by some automorphism of the structure $\mathcal M$. A structure $\mathcal M$ is said to be prime in its theory if it is elementarily embedded in every structure of the theory $\mathrm{ Th}\,(\mathcal M)$.
It is proved that the integral group rings of finitely generated relatively free orderable groups are prime in their theories, and that this property is shared by the following finitely generated countable structures: free nilpotent associative rings and algebras, free nilpotent rings and Lie algebras. It is also shown that finitely generated non-Abelian free nilpotent associative algebras and finitely generated non-Abelian free nilpotent Lie algebras over uncountable fields are strongly $\omega$-homogeneous.
Keywords: homogeneous structure, structure prime in its theory, relatively free structure, orderable group, group ring, nilpotent algebra, nilpotent ring, associative ring, Lie ring.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00100_а
E. I. Timoshenko Supported by RFBR, project No. 18-01-00100.
Received: 12.12.2018
Revised: 08.11.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 4, Pages 345–355
DOI: https://doi.org/10.1007/s10469-019-09556-w
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: E. I. Timoshenko, “Prime and homogeneous rings and algebras”, Algebra Logika, 58:4 (2019), 512–527; Algebra and Logic, 58:4 (2019), 345–355
Citation in format AMSBIB
\Bibitem{Tim19}
\by E.~I.~Timoshenko
\paper Prime and homogeneous rings and algebras
\jour Algebra Logika
\yr 2019
\vol 58
\issue 4
\pages 512--527
\mathnet{http://mi.mathnet.ru/al913}
\crossref{https://doi.org/10.33048/alglog.2019.58.407}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 4
\pages 345--355
\crossref{https://doi.org/10.1007/s10469-019-09556-w}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501536600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075352646}
Linking options:
  • https://www.mathnet.ru/eng/al913
  • https://www.mathnet.ru/eng/al/v58/i4/p512
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :13
    References:30
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024