Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 4, Pages 500–511
DOI: https://doi.org/10.33048/alglog.2019.58.406
(Mi al912)
 

Asymptotic rank theorems

K. V. Storozhuk

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Abstract: Let $A$ be a numerical $k\times\infty$-matrix such that minors $A_I$ of order $k$ tend to zero if numbers of all columns forming these minors tend to infinity. It is shown that there exits a nontrivial linear combination of rows in $A$ which is a sequence tending to zero.
Keywords: $k\times\infty$-matrix, asymptotic rank.
Received: 17.11.2018
Revised: 08.11.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 4, Pages 337–344
DOI: https://doi.org/10.1007/s10469-019-09555-x
Bibliographic databases:
Document Type: Article
UDC: 512.64
Language: Russian
Citation: K. V. Storozhuk, “Asymptotic rank theorems”, Algebra Logika, 58:4 (2019), 500–511; Algebra and Logic, 58:4 (2019), 337–344
Citation in format AMSBIB
\Bibitem{Sto19}
\by K.~V.~Storozhuk
\paper Asymptotic rank theorems
\jour Algebra Logika
\yr 2019
\vol 58
\issue 4
\pages 500--511
\mathnet{http://mi.mathnet.ru/al912}
\crossref{https://doi.org/10.33048/alglog.2019.58.406}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 4
\pages 337--344
\crossref{https://doi.org/10.1007/s10469-019-09555-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501536600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075188392}
Linking options:
  • https://www.mathnet.ru/eng/al912
  • https://www.mathnet.ru/eng/al/v58/i4/p500
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :11
    References:1
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024