Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 4, Pages 479–485
DOI: https://doi.org/10.33048/alglog.2019.58.404
(Mi al910)
 

Associators and commutators in alternative algebras

E. Kleinfelda, I. P. Shestakovbc

a NV 89503-1719 USA
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Universidade de São Paulo, Instituto de Matemática e Estatística
References:
Abstract: It is proved that in a unital alternative algebra $A$ of characteristic $\neq 2$, the associator $(a,b,c)$ and the Kleinfeld function $f(a,b,c,d)$ never assume the value $1$ for any elements $a,b,c,d\in A$. Moreover, if $A$ is nonassociative, then no commutator $[a,b]$ can be equal to $1$. As a consequence, there do not exist algebraically closed alternative algebras. The restriction on the characteristic is essential, as exemplified by the Cayley–Dickson algebra over a field of characteristic $2$.
Keywords: alternative algebra, associator, commutator, Kleinfeld function.
Funding agency Grant number
Fundação de Amparo à Pesquisa do Estado de São Paulo Proc. 2014/09310-5
National Council for Scientific and Technological Development (CNPq) Proc. 303916/2014-1
I. P. Shestakov Supported by FAPESP (project No. 2014/09310-5) and by CNPq (project No. 303916/2014-1).
Received: 10.09.2018
Revised: 08.11.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 4, Pages 322–326
DOI: https://doi.org/10.1007/s10469-019-09553-z
Bibliographic databases:
Document Type: Article
UDC: 512.554.5
Language: Russian
Citation: E. Kleinfeld, I. P. Shestakov, “Associators and commutators in alternative algebras”, Algebra Logika, 58:4 (2019), 479–485; Algebra and Logic, 58:4 (2019), 322–326
Citation in format AMSBIB
\Bibitem{KleShe19}
\by E.~Kleinfeld, I.~P.~Shestakov
\paper Associators and commutators in alternative algebras
\jour Algebra Logika
\yr 2019
\vol 58
\issue 4
\pages 479--485
\mathnet{http://mi.mathnet.ru/al910}
\crossref{https://doi.org/10.33048/alglog.2019.58.404}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 4
\pages 322--326
\crossref{https://doi.org/10.1007/s10469-019-09553-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501536600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075398475}
Linking options:
  • https://www.mathnet.ru/eng/al910
  • https://www.mathnet.ru/eng/al/v58/i4/p479
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :37
    References:26
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024