Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2004, Volume 43, Number 5, Pages 582–588 (Mi al91)  

This article is cited in 6 scientific papers (total in 6 papers)

Extremal Valued Fields

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (147 kB) Citations (6)
References:
Abstract: It is shown that every finite-dimensional skew field whose center is an extremal valued field is defect free. We construct an example of an algebraically complete valued field such that a finite-dimensional skew field over it has a non-trivial defect, that is, there exist algebraically complete valued fields that are not extremal.
Keywords: extremal valued field, algebraically complete valued field.
Received: 02.02.2004
Revised: 16.04.2004
English version:
Algebra and Logic, 2004, Volume 43, Issue 5, Pages 327–330
DOI: https://doi.org/10.1023/B:ALLO.0000044281.72007.d0
Bibliographic databases:
UDC: 510.53
Language: Russian
Citation: Yu. L. Ershov, “Extremal Valued Fields”, Algebra Logika, 43:5 (2004), 582–588; Algebra and Logic, 43:5 (2004), 327–330
Citation in format AMSBIB
\Bibitem{Ers04}
\by Yu.~L.~Ershov
\paper Extremal Valued Fields
\jour Algebra Logika
\yr 2004
\vol 43
\issue 5
\pages 582--588
\mathnet{http://mi.mathnet.ru/al91}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2112060}
\zmath{https://zbmath.org/?q=an:1115.12002}
\transl
\jour Algebra and Logic
\yr 2004
\vol 43
\issue 5
\pages 327--330
\crossref{https://doi.org/10.1023/B:ALLO.0000044281.72007.d0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42249099823}
Linking options:
  • https://www.mathnet.ru/eng/al91
  • https://www.mathnet.ru/eng/al/v43/i5/p582
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :124
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024