Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 4, Pages 445–457
DOI: https://doi.org/10.33048/alglog.2019.58.401
(Mi al907)
 

This article is cited in 2 scientific papers (total in 2 papers)

Integral Cayley graphs

W. Guoa, D. V. Lytkinabc, V. D. Mazurovcd, D. O. Revincda

a Dep. Math., Univ. Sci. Tech. China, Hefei 230026, P. R. China
b Siberian State University of Telecommunications and Informatics, Novosibirsk
c Novosibirsk State University
d Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (225 kB) Citations (2)
References:
Abstract: Let $G$ be a group and $S\subseteq G$ a subset such that $S=S^{-1}$, where $S^{-1}=\{s^{-1}\mid s\in S\}$. Then the Cayley graph $\mathrm{ Cay}(G,S)$ is an undirected graph $\Gamma$ with vertex set $V(\Gamma)=G$ and edge set $E(\Gamma)=\{(g,gs)\mid g\in G, s\in S\}$. For a normal subset $S$ of a finite group $G$ such that $s\in S\Rightarrow s^k\in S$ for every $k\in \mathbb{Z}$ which is coprime to the order of $s$, we prove that all eigenvalues of the adjacency matrix of $\mathrm{ Cay}(G,S)$ are integers. Using this fact, we give affirmative answers to Questions $19.50\mathrm{ (a)}$ and $19.50\mathrm{ (b)}$ in the Kourovka Notebook.
Keywords: Cayley graph, adjacency matrix of graph, spectrum of graph, integral graph, complex group algebra, character of group.
Funding agency Grant number
National Natural Science Foundation of China 11771409
Siberian Branch of Russian Academy of Sciences I.1.1., проект № 0314-2016-0001
Anhui Initiative in Quantum Information Technologies AHY150200
Chinese Academy of Sciences President’s International Fellowship Initiative 2016VMA078
W. Guo Supported by the NNSF of China (grant No. 11771409) and by Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences and Anhui Initiative in Quantum Information Technologies (grant No. AHY150200). V. D. Mazurov Supported by SB RAS Fundamental Research Program I.1.1, project No. 0314-2016-0001. D. O. Revin Supported by Chinese Academy of Sciences President’s International Fellowship Initiative, grant No. 2016VMA078.
Received: 07.08.2018
Revised: 08.11.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 4, Pages 297–305
DOI: https://doi.org/10.1007/s10469-019-09550-2
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: W. Guo, D. V. Lytkina, V. D. Mazurov, D. O. Revin, “Integral Cayley graphs”, Algebra Logika, 58:4 (2019), 445–457; Algebra and Logic, 58:4 (2019), 297–305
Citation in format AMSBIB
\Bibitem{GuoLytMaz19}
\by W.~Guo, D.~V.~Lytkina, V.~D.~Mazurov, D.~O.~Revin
\paper Integral Cayley graphs
\jour Algebra Logika
\yr 2019
\vol 58
\issue 4
\pages 445--457
\mathnet{http://mi.mathnet.ru/al907}
\crossref{https://doi.org/10.33048/alglog.2019.58.401}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 4
\pages 297--305
\crossref{https://doi.org/10.1007/s10469-019-09550-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000501536600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075253805}
Linking options:
  • https://www.mathnet.ru/eng/al907
  • https://www.mathnet.ru/eng/al/v58/i4/p445
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024