Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 2, Pages 252–270
DOI: https://doi.org/10.33048/alglog.2019.58.207
(Mi al893)
 

Finite generalized soluble groups

J. Huanga, B. Hua, A. N. Skibab

a School Math. Stat., Jiangsu Normal Univ., Xuzhou, 221116, P. R. CHINA
b Gomel State University named after Francisk Skorina
References:
Abstract: Let $\sigma =\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $G$ a finite group. Suppose $\sigma (G)=\{\sigma_{i} \mid \sigma_{i}\cap \pi (G)\ne \varnothing\}$. A set $\mathcal{H}$ of subgroups of $G$ is called a complete Hall $\sigma $-set of $G$ if every nontrivial member of $\mathcal{H}$ is a $\sigma_{i}$-subgroup of $G$ for some $i\in I$ and $\mathcal{H}$ contains exactly one Hall $\sigma_{i}$-subgroup of $G$ for every $i$ such that $\sigma_{i}\in \sigma (G)$. A group $G$ is $\sigma$-full if $G$ possesses a complete Hall $\sigma $-set. A complete Hall $\sigma $-set $\mathcal{H}$ of $G$ is called a $\sigma$-basis of $G$ if every two subgroups $A, B \in\mathcal{H}$ are permutable, i.e., $AB=BA$.
In this paper, we study properties of finite groups having a $\sigma$-basis. It is proved that if $G$ has a $\sigma$-basis, then $G$ is generalized $\sigma$-soluble, i.e, $|\sigma (H/K)|\leq 2$ for every chief factor $H/K$ of $G$. Moreover, every complete Hall $\sigma$-set of a $\sigma$-full group $G$ forms a $\sigma$-basis of $G$ iff $G$ is generalized $\sigma$-soluble, and for the automorphism group $G/C_{G}(H/K)$ induced by $G$ on any its chief factor $H/K$, we have $|\sigma (G/C_{G}(H/K))|\leq 2$ and also $\sigma(H/K)\subseteq \sigma (G/C_{G}(H/K))$ in the case $|\sigma (G/C_{G}(H/K))|= 2$.
Keywords: finite group, Hall subgroup, $\sigma$-soluble subgroup, $\sigma$-basis, generalized ${\sigma}$-soluble group.
Funding agency Grant number
National Natural Science Foundation of China 11401264
TAPP of Jiangsu Higher Education Institutions PPZY 2015A013
Supported by an NNSF grant of China (grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).
Received: 31.01.2018
Revised: 09.07.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 2, Pages 173–185
DOI: https://doi.org/10.1007/s10469-019-09535-1
Bibliographic databases:
Document Type: Article
UDC: 512.54+512.57
Language: Russian
Citation: J. Huang, B. Hu, A. N. Skiba, “Finite generalized soluble groups”, Algebra Logika, 58:2 (2019), 252–270; Algebra and Logic, 58:2 (2019), 173–185
Citation in format AMSBIB
\Bibitem{HuaHuSki19}
\by J.~Huang, B.~Hu, A.~N.~Skiba
\paper Finite generalized soluble groups
\jour Algebra Logika
\yr 2019
\vol 58
\issue 2
\pages 252--270
\mathnet{http://mi.mathnet.ru/al893}
\crossref{https://doi.org/10.33048/alglog.2019.58.207}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 2
\pages 173--185
\crossref{https://doi.org/10.1007/s10469-019-09535-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000479251100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069470913}
Linking options:
  • https://www.mathnet.ru/eng/al893
  • https://www.mathnet.ru/eng/al/v58/i2/p252
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024