Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 2, Pages 167–178
DOI: https://doi.org/10.33048/alglog.2019.58.202
(Mi al888)
 

This article is cited in 3 scientific papers (total in 3 papers)

Generalized wreath products of $m$-groups

A. V. Zenkova, O. V. Isaevab

a Altai State Agricultural University, Barnaul
b Altai State University, Barnaul
Full-text PDF (218 kB) Citations (3)
References:
Abstract: The concept of a generalized wreath product of permutation $m$-groups is introduced, and it is proved that an $m$-transitive permutation group embeds into a generalized wreath product of its primitive components.
Keywords: $m$-group, $m$-transitive representation, primitive component, generalized wreath product.
Received: 23.02.2018
Revised: 09.07.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 2, Pages 115–122
DOI: https://doi.org/10.1007/s10469-019-09530-6
Bibliographic databases:
Document Type: Article
UDC: 512.545
Language: Russian
Citation: A. V. Zenkov, O. V. Isaeva, “Generalized wreath products of $m$-groups”, Algebra Logika, 58:2 (2019), 167–178; Algebra and Logic, 58:2 (2019), 115–122
Citation in format AMSBIB
\Bibitem{ZenIsa19}
\by A.~V.~Zenkov, O.~V.~Isaeva
\paper Generalized wreath products of $m$-groups
\jour Algebra Logika
\yr 2019
\vol 58
\issue 2
\pages 167--178
\mathnet{http://mi.mathnet.ru/al888}
\crossref{https://doi.org/10.33048/alglog.2019.58.202}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 2
\pages 115--122
\crossref{https://doi.org/10.1007/s10469-019-09530-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000479251100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069467515}
Linking options:
  • https://www.mathnet.ru/eng/al888
  • https://www.mathnet.ru/eng/al/v58/i2/p167
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :45
    References:31
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024