Algebra i logika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Logika:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i logika, 2019, Volume 58, Number 1, Pages 69–83
DOI: https://doi.org/10.33048/alglog.2019.58.105
(Mi al882)
 

This article is cited in 4 scientific papers (total in 4 papers)

Projections of finite nonnilpotent rings

S. S. Korobkov

Urals State Pedagogical University, Ekaterinburg
Full-text PDF (227 kB) Citations (4)
References:
Abstract: Associative rings $R$ and $R'$ are said to be lattice-isomorphic if their subring lattices $L(R)$ and $L(R')$ are isomorphic. An isomorphism of the lattice $L(R)$ onto the lattice $L(R')$ is called a projection (or lattice isomorphism) of the ring $R$ onto the ring $R'$. A ring $R'$ is called a projective image of a ring $R$. Whenever a lattice isomorphism $\varphi$ implies an isomorphism between $R$ and $R^\varphi$, we say theat the ring $R$ is determined by its subring lattice. The present paper is a continuation of previous research on lattice isomorphisms of finite rings. We give a complete description of projective images of prime and semiprime finite rings. One of the basic results is the theorem on lattice definability of a matrix ring over an arbitrary Galois ring. Projective images of finite rings decomposable into direct sums of matrix rings over Galois rings of different types are described.
Keywords: finite rings, matrix rings, subring lattices, lattice isomorphisms of rings.
Received: 20.11.2017
Revised: 07.05.2019
English version:
Algebra and Logic, 2019, Volume 58, Issue 1, Pages 48–58
DOI: https://doi.org/10.1007/s10469-019-09524-4
Bibliographic databases:
Document Type: Article
UDC: 512.552
Language: Russian
Citation: S. S. Korobkov, “Projections of finite nonnilpotent rings”, Algebra Logika, 58:1 (2019), 69–83; Algebra and Logic, 58:1 (2019), 48–58
Citation in format AMSBIB
\Bibitem{Kor19}
\by S.~S.~Korobkov
\paper Projections of finite nonnilpotent rings
\jour Algebra Logika
\yr 2019
\vol 58
\issue 1
\pages 69--83
\mathnet{http://mi.mathnet.ru/al882}
\crossref{https://doi.org/10.33048/alglog.2019.58.105}
\transl
\jour Algebra and Logic
\yr 2019
\vol 58
\issue 1
\pages 48--58
\crossref{https://doi.org/10.1007/s10469-019-09524-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470818800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066993835}
Linking options:
  • https://www.mathnet.ru/eng/al882
  • https://www.mathnet.ru/eng/al/v58/i1/p69
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и логика Algebra and Logic
    Statistics & downloads:
    Abstract page:224
    Full-text PDF :31
    References:33
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024